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DYNAMICS OF A FLEXIBLE STRIP FOOTING ON AN ELASTIC
SOIL MEDIUM OF FINITE DEFTH*

BHASKAR NATH** anp PROVAKAR NATH***
UNTRODUCTION

A Civil Engineer often encounters problems of flexible footings which carry
-«dynamic loads. In order to evaluate the response of such footing-soil systems to arbitrary
loads, the dynamic characteristics of the system must be determined accurately.

The general problem of such dynamical systems is very difficult and even approxi-
rmate solutions (o them are obtained (1) only after making simplifying assumptions.
The following are recognised as the important characteristics of this class of problems:

‘(a) Coupling between the soil-medium and the footing:

Coupling occurs under both static and dynamic conditions of loading. The
contact stresses ,deform the footing; these deformations, in turn modify the contact
stresses. It will be seen later that the degree of coupling is represented by the stiffness
-of the soil medium, assumed to be elastic, relative to that of the footing.

(b) Conditions at the interface:

Under certain conditions of loading negative stresses may develop over some arcas
«of the contact surface. However, as soil is usually assumed to be incapable of sustaining
tensile stresses, this is not permitted and the problem now becomes a non-linear one.

f{c) Energy dissipation in the system:

The mechanism of energy dissipation in the soil medium and its correct represen-
tation by a suitable numerical model is by far the most difficult aspect of the problem;
‘in most real situations the phenomenon of radiation damping occurs in which stress
waves carry away energy from the sourge of disturbance; numerical representation of this
‘is difficult and at the moment a numerical solution of such problems can be attempted
conly by assuming the energy to be transported by plane waves (2, 3).

The above points illustrate the complexities of the problem and perhaps explain
the absence of theoretical or experimental attempts to its solution. A number of
.analytical and experimental (6, 7) studies of the corresponding static problem are however
.available.

Present work primarily aims at determining the contact stress response under a
iflexible strip footing at a given frequency of motion and level of critical damping, when
-subjected to vertical harmonic loads. The assumptions made are, (1) no negative (ie,
tensile) stresses or separation is allowed to occur at the interface between the soil medium
.and the footing, so that the problem is a linear one and (2) loading on the footing is
-such that its deflections are symmetrical about the centre line, so that only symmetrical
half of the geometry need be considered. The first assumption restricts the exciting
frequencies to the sub-fundamental range, as negative stresses were found to occur at
higher frequencies. The soil medium was assumed to be elastic, homogeneous and
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isotropic; its modulus of rigidity was taken as 2500 psi. and its Poisson’s ratio as 0-30;
the Young’s modulus of the footing was taken as 2-5x 108 psi., while, the material of the
footing was assumed to be 1'2 times denser than the sotl.  The problem was solved
numerically by using the method of finite differences:

EQUATIONS OF MOTION

The geometry of the footing-soil system is shown in Fig. 1:-the footing is very long
along the normal to the plane of the paper and carries harmonic vertical line-loads.
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Fig. 1. Geometry of Footing-Soil System
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The most obvious way to attempt a numerical solution to this plane-strain problem
by using the method of finite differences would be to solve the following Lame’s
equations (8), -

Clixx + Uy + By + pX = (1/cDu + (/G0 ...(1a)

Vixx + XV, + BU,zy + pY = (Iic*yv + (¢'/G)v . (1b)
where, u(x, v, t) and wv(x, y. t) are components of elastic displacements in the soil in a
Cartesian framework. (Note that all space-time variables and their derivatives are in
general complex). Suffixes following the comma in Egs. (1) denote differentiation with
respect to space, while dots denote differentiation with respect to time: ¢’ and G are

5
,

®=(Q2-29/(1-2v) and B=1/(1—2v)
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p is the mass density of soil and X and Y are components of body force accelerations.
Solution of Eqs. 1 with appropriate initiai and boundary conditions will give the elastic
displacements and hence stresses within the soil.

There is one difficulty however in such a displacement-type analysis; convergence
studies indicate that a small error in displacements (mainly u(x, y, t) in this case) obtain-
ed from Egs. (1), produce a relatively large error in the computed stresses, particularly
in areas of rapldly varying stresses. On the other hand, solution to the problem from
strain equations gave very satisfactory results. The latter set of equations for this prob-
lem can be obtained (8) from Egs. 1 by differentiation; it is not necessary to derive them
here; we can simply write them in the compact matrix from as follows :

3—2 82 az —I
Ocax2+5372 P e 0
32 ot 82 ‘1 “ [
{35-; °'Ca—w+5)§ 0 {e}—*@ {CH’(—} {e} ()
02 &*
]9 2
L deay B6x3y M |

in which, {e}=={exx €,, €xy}T and V? is Laplace’s operator in two dimensions.

The boundary conditions relevant to Eq. 2 are as follows :
Cxy=0Cxx (=7\B+2Gexg)‘-=0

at the free surface and far boundaries; the interface was assumed to be free of shearing
stresses, 50 that,

exy=0 at x=0 and y-=b.

Fig. 1 shows that the actual indentation of the footing into the soil is {U4-38}; this

indentation can now be incorporated into a boundary condition for ex, at the interface;
thus,

U(t)+3(y,t)=r exxdx atx=0 and y=b . (3)

Note that U(t) represents the indentation of the footing, assumed to be rlgxd into the
soil medium whose depth is H.

The other direct stress oyy Was also assumed to vanish at the far boundaries; the
problem however is not yet uniquely defined as no condition can be imposed on gy, at the
free surface and at the interface. An indirect method given in Appendix I, was used to
determine these boundary values of ey,.

As for the footing, its equation of motion can be written as,
.

[S] {8}-+[M] {8} [T] {e}={f} : (B

in which [S] and [M] are respectively stiffness and mass matrices of the footing and the
vector {f } represents the intensity of external loading on the footing; [T] is a rectangular

matrix which operates on {e} to give the direct stress vector {G:(x } at the interface; (note

that in Eq. (4) as well as in other matrix equations factors due to finite difference manipu-
lations and material properties are assumed to be implicit within the matrices).

PROBLEM SOLUTION

Let the numerical version of the matrlx on the left side of Eq (2) be [A]. into which
all relevant boundary conditions, as well as frequency parameters of harmonic motlon
- have been inserted, so that it now reads, on inversion,

’
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{e} = [A7]{U+38} o (5)
Noting that by definition, ’
C {epd = ITe) . : .. (6)
Eq. (5) can now be written as, .
{53} = [TA7'{U} + [TA-1}(3) | o (D

Also, as {3} is null everywhere except at the interface, we may regard it as a vector
for the interfacial pivots only; further, with [D] as the interfacial submatrix of [TA™),
Eq. (7) can now be written as,

{04} = [TA-I{U} + [D}(3} (8

in which the ranges of [D] and {3} are equal to the number of interfacial pivots. It is

also noted that the first expression on the right side of Eq. (8) gives the ‘rigid’ stresses
corresponding to a very stiff footing.

) Assuming that the frequency parameters, as well as the mass matrix are implicit
in [S], the deflections {3} can now be obtained from Eqs. (4) and (6) as,

(3} = IST]{f—ol} - 9)
Equations (8) and (9 illustrate the coupled nature of the problem, in which coupling

occurs between the ﬂgxible footing and the soil. On eliminating {3} and {ol.} in turn
from Egs. (8) and (9), we can show that
(G} = [ZTAY (U} +.£2DS7) { 1) - (10
and {8}= —[Z'S7'TA") (U} + [Z-28- {f} (1)
in which [7] = (I+qDS™], [Z] = [I+q5-'D], q = Gb¥/Et* and [f] = unit matrix.
It is noted that the factor q. which was so far implicit in,the various matrices,
represents the stiffness of /the. soil, relative to that of the footing; it also represents the

degree of coupling betweén the soil and the footing, as will be seen later; as expected,
with =0, Eq. (i0) gives the contact stresseés under a rigid footing.

In order to \determine the contact sfresses due to an arbitrary line loading,
Egs. (10) and (11) must be solved with the auxiliary equilibrium equation,

ZF 4 fmpT (G48) = (Wi (6l (12
in which ZF=total load on the footing and {m)T and {W}T are respectively its mass and
weighting row matrices. They operate on {U+38} and {a. } Tespectively to give inertial
load and contact stress resultants,

The steps leading to the complete solution to the problem for a set of stiffness and
dynamic parameters can be summarised as follows : -
1. Set {8}={0} in Eq. (12) and eliminate {o. } between Egs. (10) and (12) to
give {U}. S o o ' .
2. Use this value of {U} to determine {3} from Eq.(11); substitute this value of
{8} in Eq. (12) and repeat the whole process. ' '
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The process is highly convergent and only a few cycles are required to get accurate
estimates of {8} and {U}. 'Eq. (5) can now be solved to give elastic strains (and hence
stresses) everywhere within the domain of interest,

27

- A simple fortran program was writte

n to generate the matrices [A), [T] and [S]
automatically, by using the finite difference methods. The domain was approximated
by a total of 79 pivotal points, of which 5 represented th

¢ interface,
‘RESULTS AND DISCUSSION

First, it was necessary to determine the degree of accuracy of present results by
comparing them with exact solutions. However, no exact solution to the dynamic case
comparable with present geometry was available: Fig. 2 compares present static contact
stresses under a rigid (9==0) footing with their exact (9) counterpart. The agreement is
seen to be good, except around y=b, where it is poor. This is to be expected however,
as there is a theoretical singularity of stresses at this point. Fortunately, this singularity
was found to disappear for most loading conditions, when the footing was treated as
flexible. Thus, results for the flexible footing are expected to be ofa high degree of
accuracy.

o
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Fig. 2. Rigid Undamped Contact Stresses q=0; p=0-3

It is also interesting to remark that static flexible stresses due to the present method
were generally in good agreement with the experimental findings of reference 6; the small
areas of disagreement that may be found in the distribution and magnitudes of contact
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stresses between these two studies, can be attributed to the fact that the latter results were
for a three dimensional soil medium.

Central line-load of P/length, v=0-3. q=01 and 6'4

Fig. 3 shows the undamped contact stress response at various sub-fundamental
frequencies of motion, while, Figs. 4 and 5 show stress response at a relatively high criti-
cal damping of 207;; these plots clearly show thal (a) at a given frequency and level of
critical damping, the shape of the contact stress distribution curve depended entirely on
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Fig. 3. Undamped contact stresses; p=0.3 Fig. 4. Complex Contact stress Response
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the stiffness factor q, and (b) real response diminishrd with increasing frequency, while, as
expected, response at quadrature with loading increased. Fig. 6 shows the undamped
contact stress/penetration ratios, plotted along the interface at various exciting frequen-
cies; these plots are found to be generally similar to the corresponding contact stress
plots {Fig. 3); further, the data of Figs. 3 and é can be used, along with Eq. (12) to
express contact stress response in terms of the central load P, if required.
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Line loads of 1000 Ib/in at y=0 and 800 Ib/in at ¥=:05b, v=0-3 ; b=100 inches; q=0-1,
04 and 1-0 ; G=2500 psi; E/G=1000.

Figs. 7 and 9 show the undamped contact stress response at various stiffness
factors. Itis interesting to note that with increasing flexibility of the footing, the stress

distribution curves became concave upwards; also, as before, response decreased with
increasing frequency of motion and the conta

ct stress/penetration plots (Figs. 8 and 9
were similar to the contact stress plots,
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Fig. 7. Response with multiple loads Fig. 8. Contact stress penetration plots
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Undamped contact stress response at various stiffness factors are shown in

Figs. 10 and 12; here also the shape of the distribution curves .were determined primarily
by the stiffness factor q, and response decreased with increasing frequency of motion.
Figs. 11 and 12 show the stress/penetration plots for the interface at various stiffness
factors: here again, these plots are found to be similar to the contact stress diagrams.

The following observations are made on the results:

1. Ata given frequency and level of damping,
depended on the stiffness factor q; witha
became concave upwards as the footing

the distribution of contact stresses
single central load, the distribution
became increasingly flexible, with
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findings of reference 6. It
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multiple loads and increasing flexibility on the other hand, the contact
stresses depended increasingly on both location and magnitudes of the loads.
For relatively stiff (q < 0-1) footings, the distribution of contact stresses:
became insensitive to the magnitude and location of the loads and stress.

concentrations appeared at the edges. These observations generally agree
with the findings of reference 6.
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Fig. 11. Response with maltiple loads. d=0;
v=0.3 b=100 In; G=2500 psi.

In all cases the stress response decreased with increasing frequency of motion.
This indicates that the dynamic magnification factor (DMPY of stresses in the
sub-fundamental range is less than unity, although, it will be high in the:
vicinity of the fundamental frequency of the footing-soil system. In a real
situation however, damping_(particularly radiation damping in infinite media)
would severely attenuate DMF at high exciting frequencies; consequently,.
intolerably high values of DMF are not likely to occur and in any case would

be confined to narrow frequency bands in the vicinity of the fundamental and
low natural frequencies of the footing-soil system; under these circumstances ;

it seems likely that in a large variety of real systems, static stresses would
represent the worst situation under harmonic conditions of loading.

The contact stress/penetration plots were generally similar to the contact
stress diagrams themselves; this observation also generally agrees with the

seems thetefore that simple methods based on
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~ Winkler’s ‘hypothesis.(10). are  valid only in cases in which either (a) the
footing is relatively stiff so that under. all loading conditions contact stress
distribution is nearly uniform .(except at the edges) or (b) the loading is
such that substantial variation of contact stress along the interface is not

anticipated, the latter is difficult to determine and in fact is the ¢rux of the
problem. _ ‘
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Fig, 12. Response with multiple loads, d=0; p=0.3;
! b=100 in.; G=2.00 psi; =10

4. The problem considered in this paper was rather simple in that non-linearities
.due to scparation at the interface and ‘material propertiés were assumed to be
=Nbsent; further, the medium was assumed to terminate on a rigid strata ata
finite depth, which is not usually the case. In a real situation, a combination

‘of these complexities, among others, would exist. - In addition, of course the
harmonic responses wouid have to be integrated in the frequency domain to

. . Bive responses of the system to a given arbitrary excitation.” These aspects
' “underfine the complexities of the ‘problem and fruserate, particularly in case
of non-linear material properties, any attempt to produce a simple meothod for
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its splution. At the moment a comprehensive program is in progress to solve
the Various aspects of this problem by using the finite element method; results
of this study will be reported soon. :

CONCLUSIONS

The following observations are made in conclusion.

1. For a given set of vertical harmonic loads and level of critical damping, the
contact stress response depended mainly on the stiffness factor, q, defined as the ratio
of stiffness of the soil medium to that of the footing. For a relatively flexible (q>0-1)
footing, the distribution of contact stress depended additionally on the way the loads were
arranged on the footing, while, for stiff (q<0' 1) footings, the contact stresses were insen-
sitive to the arrangement of loads; the stress distribution now resembled that due to the
classical rigid block indenting into the medium, producing stress concentrations at the
edges.

2. For a given set of parameters, the real part of stress resppnse decreased with
increasing frequency of motion, while, response at quadrature with loads increased.

3. Plots of contact stress/penetration ratios at the interface were generally similar
to the contact stress plots themselves; thus, simpler mzthods of analysis based on Wink-
ler’s hypothesis (which assumss contact stress/pznetration ratios to be constant along the
interface) are valid, at least in systems involving strip footings, only for a limited cate-
gory of flexible footing problems in which the ratio stress/penetration does not vary
appreciably along the interface.

4. The coupled natural frequencies of the system were different from those of
the footing and the soil medium separately. Present results show that coupling reduced
the fundamental frequency of the soil medium by amounts which depended on the degree
of coupling between the soil and the footing. With q=0'2 for example, the reduction
was found to bs around 6%: howzver, this is an area of the problem in which much work
remains to be done.

5. Finally, it is interesting to note that, although contact stresses decreased with
increased exciting frequency in the sub-fundamental range considered, the penetration of
the footing into the soil medium, nevertheless, increased and reached resonant propor-
tions as the exciting frequency approached the fundamental natural frequency of the foot-
ing-soil system, To verify this, consider the problem of multiple loads in Figs. 7 and 8:
with q==0"1, the penetration of the footing at the origin (x=0, y=0) at various exciting
frequencies, for example, can be computed from the data of figures 7 and 8 to give,

.n | stress (psi) stress/penetration (lb,r:ina) L penetration (in)
\ ’ .
oC 13-10 40-00 0-328
8-0 10-35 22-80 0°454
6-5 7-01 9-92 0-703

The last column shows clearly that penetration increased with increased frequency of
motion. :
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APPENDIX 1

The values of ey, on x=0, to be used in Eq. (2) can be found as follows :

If Egs. (1) instead of Eq. (2) were used to solve the problem, then the displace-
ments u(x, y, t) and v (x, y, t} must satisfy the conditions,

(A+2G) Wx-+Av,y=0 and up+vx=0
at the free surface; further, at the interface we must have,
u(0,y, )=Ut)+3(y,t) and u,y+v,=0

Other boundary conditions are the same as those described in text.

The various differential operators in Eq. (1) can now be replaced by their corres-
ponding matrix operators, which satisfy the above boundary conditions. The resuiting
equation and Eq. (4) (with minor modification) constitute an alternative set of coupled
equations, which can be selved to give the required values of e, on x=0.

The differential operators associated with Eq. (1) are,” "

&8 n 2t 2* ot d &
Tt T a2 Py

These operators also appear in Eq. (2); consequently, the matrix operators of

Eq. (1) can be taken from those of Eq. (2) and adjusted to comply with the conditions at

x=0 discussed above. This reduces storage requirements and facilitates computation
considerably.

APPENDIX il NOTATION

b Half-width of the footing.

c Velocity of shear waves in soil,

¢’ : Coeflicient of viscous damping in soil.
d Percent critical damping.

E Young's modulus of the footing.

€xx, Byy, €xy Direct and shear strains in soil.
G Modulus of rigidity of soil.
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Depth of soil layer.
Period parameter (=cT/b).

Concentrated line load on the footing,
Relative stiffness factor (== Gb?3/Et?). -

Period of oscillation,

Thickness of the footing ; time. .
Vertical indentation of the footing, assumed to be rigid, into the soil
medium.

Components of displacendent in soil,
Components of body forces,

QC—2v/(1=2v). '

1/(1=2v)

(exx+eyy)-

Lapiace’s operator in two dimensions,
Deflections of the footing,

Mass density of soil.

Lame’s Elastic constant.

Direct stresses.

Direct vertical stress at the interface.



