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HYDRODYNAMIC EARTHQUAKE COEFFICIENTS OF ...
- BRIDGE PIERS e

BY
Dr. P. V. RAQ*

INTRODUCTION

Bridges in seismically active zones have to be designed with special considerations
of the dynamic forces caused by an earthquake. These forces acting on the various compo-
nents of a bridge and their effects on the bridge as a whole structure have to be carefully
evaluated to ensure its stability and its availability for rescue operations during an earth-
quake. An earthquake or an explosion gives rise to unsteady. flow at the bridge
piers. This kind of flow occurs also when a flood wave or a tidal wave moves past a pier,
an intake or a light-house tower. Evaluation of forces on structures in unsteady flow is
an important consideration in their design. The problem is mathematically involved and
exact solutions are available only for a few elementary shapes of these structures. Histori-
cally, Stokes'® calculated this force on a circular cylinder in 1850. In 1920 Riabouchinsky'®
obtained expressions for these forces on rectangular cylinders. In 1933 Westergaard 10
gave a solution to determine the pressures on a rectangular vertical dam subjected to hori-
zontal acceleration. Jacobsen'® in 1949 gave the solution for a cylindrical pier taking
into account the free-surface condition. In 1957 Stelson and Mavis® reported experi-
mental results of the hydrodynamic forces on rectangular piers.

In the analysis of these problems the Laplace equation in the appropriate coordinate
system is solved for the boundary conditions, namely, that the liquid in contact with a rigid
wall sticks to it and that the pressure on the free surface is constant, and the solution implies
an ideal fluid. Bharat Singh and A.K. Jain'” compared their measurements with Jacobsen’s
theory for circular piers and with Westergaard’s theory for rectangular piers, The American
and the Indian'” practices ar¢ based on Lamb’s cylinder analogy (a misnomer !) and
Westergaard’s theory. Riabouchinskey’s theory has been overlooked by the earthquake
engineers although his analysis like that of Jacobsen’s is rational and valid for rectangular:
piers.  On the other hand, application of Westergaard's theory to rectangular piers is
questionable, These aspects are examined in this paper. Dimensionless graphs are given
to facilitate calculation of the hydro-dynamic forces on circular and rectangular piers.

ADDED-MASS APPROACH

When a bridge pier vibrates in a channel flow, it is subjected to two types of force;
one is due to normal and tangential (frictional) stresses which make up the viscous drag
force acting in the flow direction, and another due to acceleration of water which acts nor-

~

mally on the pier. The later force is in effect analogous to increasing the mass (inertia)

of the pier. This apparent increase in the mass of the body is termed the added mass, and
the ratio of the added mass to the mass of water displaced by the pier is known as
the added-mass coefficient, denoted by A. 1t is also called as the hydro-dynamic inertis
coefficient. It depends primarily on the geometry of the pier and its orientation to ground
motion, and to some extent on the proximity of the boundary. Fluid viscosity has but
inappreciable effect on it which may be neglected for all practical purposes. By virtual
mass is meant the body’s own mass plus the mass of the fluid which is accelerated by.

it. Some call the ratio of the virtual mass to the mass of water displaced by the body
as virtual inertial factor or mass coefficient. There is, however, some confusion in the.

usage of these terms. It is sugpested that the hydrodynamicist’s notation-added-mass
cocficient-may be used by the earthquake engineers also,
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There is an elegant mathematical theory in hydrodynamics (potential-flow theory)
to compute the added-mass coefficients of regular bodies. For a translating sphere it is
0.5; for a long circular cylinder A=1.0; and for an_elliptic cylinder of fineness ratio 4,
A—4. The added-mass concept is very useful in calculating the unsteady flow forces on
hydraulic structures oscillating in water with the ground motion during earthquakes. How-
ever, this concept cannot be extended to high frequencies when the compressibility effects
of water become appreciable, because the added-mass calculations are based on the assump-
tion of incompressibility of water. As an example, consider a pier in 30 metres height of
water subjected to an earthquake of dominant frequency, 20 hertz. The velocity of pressure
wave in water at 15°C and at atmospheric pressure is 1470 m/sec. The dimensionless para-
meter—a measure of elastic forces relative to inertial forces—for this oscillatory flow field
is n? L2/c*=(1/6)<c1. This shows that water behaves as an incompressible liquid at such
a high frequency of 20 Hz uncommon even with destructive earthquakes. Furthermore,
at such high frequencies the pier oscillates in its own wake of a complicated flow field.

Once the added-mass coefficient of a pier is known, the hydredynamic force on it
can be computed by multiplying it with the mass of water displaced by the pier and the
acceleration. The variation of this coefficient with the height of water and with the fineness
ratio (breadth/thickness) of the pier and the point of action of this force are discussed in the
following paragraphs.

CIRCULAR PIERS

Viscous drag:—The dimensionless drag coefficient, Cp, when multiplied by
e A, V22 gives the drag force on the pier in the flow direction. For a given geometry of
the pier it depends on the Reynolds number (R) and the roughness of pier. For circular
pier Cp=1.2 for R=4x10%. There is a transition in the boundary-layer flow as a cons
sequence of which Cp drops to 0.4. It was only recently that Roshko'® reported a second
upward transition at R=4x10° which increases Cp to 0.78. Due to uncertainties in
prgdicting Cp in transitional flow it is suggested that the following criteria may be adop-
ted:

Cp=1.2 103 < R4 108
Cp=078 .. v R>4x10°

Since the Reynolds number of a prototype pier is usually greater than 4% 108, & single
value of Cp=0.78 may suffice for design purposes. :

Force fluctuations due to turbulence:—The drag coefficients given above correspond
to temporal mean flow velocity. Instantaneous value of the drag force can be obtained
by adding to the mean drag the fluctuation, F'p, for which the coeflicient is C'p. The
force fluctuations are random in nature and closely follow the normal law . of error. Hence
it is possible to obtain the values of F'p, from the R.M.S. values reported by Vickery®
from model tests in a water tunnet with turbulence of intensity approximately 10 percent
and of scale of the order of the lateral dimension of the pier. The variation of F'p/Fp
with the slenderness ratio is shown in Fig. 1.

Hydrodynamic earthquake forces:—Jacobsen’s analysis for circular piers yields a
complex formula as a series of transcendental functions. The solution has been plotted in
Fig. 2 as a variation of the added-mass coefficient with the slenderness ratio H/D, and in
this form it facilitates the design engineers an ease in application. 1t can be seen that A
increases with slenderness ratio and attains the Stokes value of 1.0 at H/D=10. The channel
bottom has an obvious effect on the added mass only for shallow depths of water because of
the changes in the irrotational flow patterns. Evidently the height of water at which the
added mass is no longer affected is about 10 times the pier thickness (i.e. H/D>10).

. The series in Jacobsen’s expression was approximated by a power law which upon
_integration, yielded the point of application of the resultant at 0.41 height of water above
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the bed level. To find the design force on the pier in the flow direction, one has only to
add ail the three fqrcqs so computed (Fig. 3). It may, however, be mentioned here that the
added mass of a pier in accordance with the potential-flow theory, is invariant with the
flow velocity in the channel at the bridge.

RECTANGULAR PIERS

Viscous drag :—For different fineness ratios the mean drag coefficients are plotted in
Fig. 4 for rectangular piers with a blunt leading edge and with rounded ends. These curves
are prepared from experimental data®. It is evident that Cp for a blunt edged section is
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larger than-for a pier with rounded ends. In both the cases the value of Cp decreases

as the fineness ratio is increased, and attains at B/T=4 constant values of Cp=0.93 for a:

pier with square edges and Cp=0.57 for a pier with rounded ends. In the case of piers
with larger fineness ratios the separated flow reattaches at some distance downstream from
the leading edge with almost identical wake characteristics and hence the drag coefficients
remain constant.

Turbulence fluctuations :—In Fig. 1 are shown the variat'ions of the fluctuatiqn com-
ponent of force due to turbulence (of the same description as given under circular piers) for

different slenderness ratios and for fineness ratios 1.0, 0.67 and 0.42. Due to the inherent”

nature of turbulence the experimental data are not consistent. Yet, there are definite trends
which enable extrapolation for any given pier shape. It can be also seen that the fluc-
tuation force becomes a constant proportion of the mean drag at large ratios of slenderness.

. Earthquake forces:—It is rational to compute the hydrodynamic forces on rectangular
piers by using Riabouchinsky’s analysis based on potential-flow theory. His equations
are complex and require evaluation of special functions. His expressions are plotted in
this paper on a log-log graph (Fig. 4) showing the variation of the added mass coefficient
with the fineness ratio of the pier. On the same graph are shown the experimental data
obtained by Stelson and Mavis, and the theoretical values for elliptical cylinders of different
fineness ratios. The experiments were performed with water and the results are consistently
lower than what ideal-fluid theory predicts, although the effect of fluid viscosity should be in
accordance with Stokes” formula'®) to increase very slightly the values of the added-mass
coefficient. It is interesting to note that there is little difference in the value of the added-
mass coefficient of a bridge pier of the same fineness ratio whether it is streamlined or not.
It is also not an uncommon practice in aerodynamics to approximate elongated bodies by
elliptical shapes. For this reason it is recommended here that the hydrodynamic forces
on bridge piers streamlined or not, may be computed from the theoretical curve in Fig. 4.
If an earthquake is assumed to occur in the thickness direction of a pier, then the hydrodyna-
mic force on it can be easily found from Fig. 4 by reading the added-mass coefficicnt for the
reciprocal of the fineness ratio of the pier. Westergaard's theory considers a two-dimen-
sional plate retaining water on one side of it, and it represents in no way a bridge pier
surrounded by water for which the hydrodynamic force has to be obtained by integrating
the pressure around its body contour. It is, therefore, fallacious to apply We§tergaard ]
theory to rectangular piers even as an approximation. Photographs of bridges* that
failed during an earthquake show that in some cases (See Figs. 2a & 2b in Ref, 4) one
end of the deck slab slipped down from the pier into the water while the other ¢nd was
resting on the pier. This can be caused by the pier set into vibration in a transverse direction.
The pier is weaker in its thickness direction and the vibration effects from an earthquake
in this direction need to be carefully examined by the design engineer. The flexibility of
the pier which is not considered in this paper becomes very important in this case.

THE INDIAN SPECIFICATIONS

For circular or rectangular bridge piers the specifications!” recommended the use of
Lamb’s cylinder analogy if the transverse dimension of pier is less than half the height of
water (i.e. H/T, H/B>2), and Westergaard’s theory otherwise.

Consider a circular pier. Theory predicts that A=0.74 (Fig. 2) at H/D =2 while
the specifications stipulate A=1.0, nearly 50 percent in excess of the actual force.

Consider a rectangular pier with B=15m, T=2m and H=30m for which H/T,
H/B>2. As per the specification, A=6.07 for an earthquake occurring in any direction,
while theoretically A=0.2 for an earthquake occurring parallel to the pier and A=7.0 in
the transverse direction. It is obvious that the hydrodynamic force in one direction is
overestimated, and it is underestimated in another direction (thickness-wise). The pier
can vibrate adversely and fail in the later case. If the water depth, H=20m, H/B< 2, then
using Westergaard’s theory, A=35.83 in the transverse direction. It decreases as H/T is

)
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further decreased. In view of the above discrepancies it is suggested that the followin_g.
specification may be considered.

For circular piers with H/D>10, A=1.0, and the hydrodynamic force _acté at the
midpoint of the height of water, For H/D<10, the value of A should be read from Fig. 2,
and the force acts at 0.41H above the river bed.

For rectangular piers, A should be read from Fig. 4 for the corresponding fineness
ratio, T/B of the pier section and it may be taken to act at 0.41 H above the river bed.
The hydrodynamic force in the thickness-wise direction has to be found out for fineness
ratio B/T, and the safety of the pier against the force and vibration due to an earthquake
in this direction has to be carefully examined. If H/T > 10, the point of application of the
hydrodynamic force may be taken at 0.5H above the river bed,

CONCLUSIONS
The following conclusions are given on the basis of the above discussion:

1. In the design of bridge piers in seismic areas, the moment due to hydrodynamic
force on the pier generated by a horizontal earthquake has to be added to the
moment due to viscous drag which should also include the turbulence
fluctuation,

2. The use of Jacobsen’s analysis for circular piers and Riabouchinsky’s theory for
rectangular piers is recommended for the determination of the hydrodynamic
forces on bridge piers. Necessary graphs are furnished in this paper for an
easy calculation of these forces using the added-mass approach.

3. The transverse hydrodynamic force on a bridge pier needs special consideration
while examining its safety against an earthquake in this direction,
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NOTATION

A = added mass coefficient,

A, = area of a pier projected on a plane normal to flow,
B = breadth of pier,

¢ = velocity of propagation of pressure wave,

Cp == coefficient of drag,

D = diameter of circular pier,

Fp = viscous drag force,

F'p= turbulence fluctuation part in drag force,

H = height of water,

L =H,

n = frequency of vibration,

R = Reynolds number,

T = thickness of pier,

V = mean velocity of flow in river,
v = kinematic viscosity of water,

p == mass density of water,

D ‘ .
ﬁ = slenderness l'atIOS, and

B
H’

= fineness ratos.



