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COUPLED FORCED MOTION OF STRUCTURE-
' FLUID SYSTEMS '

BHASKAR NATH*

INTRODUCTION

The dynamic characteristics of a structure, which is partially or totally submerged
in a fluid medium are substantially different from those due to ifs vibration in absence
of a medium ; the fluid in the Civil Engineering context is usually water, which con-
siderably modifies the response of the structure to a given motion, the extent of modi-
fication depending on the characteristics of the structure and the fluid body.

. A very important aspect of the problem is the interaction between the structure
and the fluid ; the vibrating structure generates Hydrodynamic pressures which modify
its deformations ; these deformations in turn modify the Hydrodynamic pressures
causing them. The problem is thus recognised as a ‘“‘coupled’ or Elasto-Hydrodynamic
one, in which the structyre-fluid system may be considered to respond to excitation
as a unit, having its own ‘coupled’ dynamic characteristics, which are differcnt from
the uncoupled characteristics of the structure and the fluid separetely. Exactly how
different the coupled characteristics would be compared to the uncoupled ones, would
depend on the so called “‘coupling factor’” (8) between the structural and fluid phases,
For example, for a flexible structure, the effect of coupling would be only to the extent
of its so called ‘“added mass’’ (11, 12), - while, for a stiff structure, the characteristics
would not be very different from those of the fluid-body itself,

Brahtz and Heilbron (1) were probably the first to study the effect of interaction
on Hydrodynamic pressures generated on a vibrating gravity Dam section, by assuming
it to deflect linearly during horizontal motions. This assumption however is a rather
restricting one for general structure-fiuid systems,

The well known *‘added mass’ method has been used extensively (3, 12, 13) to
account for the coupling effects, By definition, the ‘“‘added” or virtval mass of a sub-
merged structure is the mass of flnid that may be imagined to participate in motion,
as if it were an additional mass of the structure itseif. Tremmel (9) suggested that
coupling effects could be represented by adding equal additional masses at the nodes
of the structure under consideration. This however was found to be unsatisfactory,
as it gave grossly exaggerated results (3). Itis more logical however (3) to abandon
the assumption of equal nodal added masses and instead assume them to be propor-
tional to the actual Hydrodynamic pressures generated at the interface between the
structure and the fluid ; indeed the method can be further refined by coupling the mass
matrix of the structure with the full ‘‘Hydrodynamic mass matrix”’ (3), which refers to
the interface between the structure and the fluid. This refinement gives very satisfactory
results for flexible structures (3, 13). Unfortunately however, this procedure is not
suitable for stiff structures ; this is due to the fact that the conventional added mass
approach does not recognise the compressibility of the fluid, which now becomes
important and has considerable effect on added mass (6).

A satisfactory solution to such problems can be obtained by formulating them
as problems of coupled forced vibration (7, 14) ; this recent development is a numerical .
one in which the stiffness matrix of the structure and the matrix giving the Hydro-
dynamic pressures are obtained by finite difference or finite element methods. ~The
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only criticism of this method lies In the fact that whereas the stiffness matrix of the
structure can be obtained relatively easily, determination of the Hydrodynamic mass
matrix demands a faithful representation of the entire fluid-body by the numerical grid.
It is ¢asy to see therefore that with complicated . configurations of the structure {which
may be curved in space, for example) or the fluid body, one has a real problem ; such
problems can of course be surmounted, provided that one has access to large computer
stores and sophisticated routines. :

This paper aims at giving a brief but comprehensive numerical formulation of
.the general problem of harmonic c_:qppled forced motion -(both horizontal and vertical)
of structure-fluid systems. In addition, a simple method of Electric Analogy, developed

earlier by the Author (3, 4, 10) is also given. The latter is of particular help in case

of complicated configurations of the structure-fluid system. .

EQUATIONS OF MOTION

- Consider the simple structure-fluid system shown in Fig. | ; during horizontal
motion, .for example, the inertial acceleration, a (t) of the structure is clearly given by,

a(t)=ag(t) + ¥ ol
where, ag(t)=ground acceleration, z (y, t)=deflections of the structure measured from
the y-axis and dots denote differentiation with respect to time. With [S] and [M] as
non-dimensional stiffness and mass matrices (note that [ ] and { } respectively denote
square matrices and vectors ; [ ]? denotes a diagonal matrix) of the structure and p

as its mass density, its equation of n:mcoppled damped forced motion can be written in
the matrix form, on using Eq. 1 for inertial acceleration, as,

MG +550) + 8148 + 5 0= PE M {ag .2

in which, E=Young’s modulus of the structure, ¢'=coefficient- of equivalent viscous
damping and {p'}=Hydrodynamic pressures at the interface between the structure and
the fluid, '

Assumping the fluid to be frictionless, the Hydrodynamic pressures, p(x, v, t)
generated in it during motions of small amplitudes can be shown (10, 12) to be governed
by the wave equation, .

vip=(l/c*)p , 3
in which, c=acoustic velocity in' the fluid and v*® denotes the Laplacian operator in a
Cartesian framework. For a finite fluid domain and under steady-state conditions of
motion without loss, a standing-wave solution to Eq. 3 is given by the matrix equations,

{pei=q[G] [V]? {p:}+[G] {f:} , .42
and ' - {pid=qlG] VI* {p:}+[G] {f} v ilib

where the suffixes r and i stand for real and imaginary .parts of response respectively ;
also, :

1

{p}={p:} Sin (at)4-{ps} Cos (wt) ...5a
{f}={f;} Sin (wt{f;} Cos (wt) ...5b
It is to be noted in Bgs. 4 that although the fluid has no damping, {p} is nevertheless
complex, since {f} for coupled motion is complex, as will be seen later. Also, q=(w/c)’,
w=circular frequency of motion and [v]? is a weighting matrix of elemental fluid volumes.
[G] is the so called ‘““influence matrix” (3) of dynamic pressures and is obtained from
the solution of y®p=0; the vector {f} is obtained from the boundary conditions that
{p} must satisfy ; these are : : ) ‘
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At the free surface at y=H,, onc may assume p=0 if waves are not likely to
form (5, 1,0_) ; otherwise, a linearised condition such as, :

Wgh+F=0  aty=H | 6
‘where, g=_gravity acceleration, may be assumed (5, 10). At moving boundaries one
-must have (3, 12, 14), with m=mass density of water, ‘

ap ,
35 Tma(t)=0 w7

‘where, n is the direction along the normal to the moving surface ; similarly (5, 10). at
stitionary boundaries one must have, ‘

ép ‘
an-—o ---8

) Clearly, {p} in Eqs. 4 gives dynamic pressures at all the pivots within the fluid ;
“however, for the solution of Eq. 2 only the amplitudes of {p’}, given by,

' {p}={p:} Sin (wt)}+{ps} Cos (at) 9
at the interface are required (note that {p’} is a sub-vector of {p} for the interface);
{p’} can be extracted from {p} by suitably partitioning Egs. 4. so that, with [Dg as a
sub-matrix of [G]. referring only to the interface, one can write on assuming equal grig
-spacing for simplicity,

| {pr}=alD] {p:}-+[D] {f'x} . ...10a

end o {p}=q[D| {p3+D] {f"} 10D
in which {f’} is the interfacial sub-vector of ff }, given by,

{f"}={f"s} Sin (et)4+{f";} Cos (wt) -l

With p=0 at y=H; for simplicity, non-zero conditions are found to exist only
.at the interface ; consequently (1), it can be shown from Eqs. 1 and 7 _that,

{f}=mH; {8’ ()}=mH; {a (t)+5} 12
“with {ag (O} =1{a} Sin (ot) . A
-and {z}={zr} Sin (wt)+{Z;} Cos (wt) C .13
-one obtains from Eqs. 11 and 12, '
{f's}=mH, {8—w%2:} _ ..14a
.and {f';}=—mH,* {2;} ~.14b
Now, substituting Eqs. 14 into Eqs. 10, andwith [I] as the unit matrix, one has,
{P;}=mH; [KD] {a}—mH:e? [KD]}{zs} ...158
.and {P1}=—mH:w* [KD]}{zs} ‘ ...15b
in which, [Kj=[l—gD]* » .. 16

Now, using Egs. 9, 13 and 15, Eq. 2 can be written in the compact matrix form,
.after simplification, as,

([s=(mrpx0)] (55T 1fa]
e [s-2(m+ o)) { j
- -ﬁ{—p—gj [ ME—%KD]{ a %1 R

L J
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in which, r'=H,-/H,‘ k=p/m and ]\=;(pH'¢o’/E) ; solution of Eq. 17 gives the deflection:
response of the structure during horizontal motion of the structure-flnid system, .

THE ANALOGY

An indicated earlier, [D] is the interfacial sub-matrix of [G], which in turn is:
the solution of, .

vip=0 ...18:
Matrix [D] can therefore be defined as the ““influence matrix”’ of incompressible pressures
at the interface. If numerical methods are used to solve Eq. 17, [D] can be obtained only-
by processing the complete [G] matrix, which is usually large; however, a simple electric.
analogy method described below enables one to determine [D], without processing the-
large [G] matrix.

This analogy method has been described in detail in references 6 and 11 ; how-
ever, a reasonable account of it is given here.

It is known that in a homogeneous electric conducting medium without sburces
or sinks, the electric potential function, V(x, y) obeys the equation,

viv=0 19

The similarity between Eqs. 18 and 19 forms the basis of the analogy. Further,
as Eq. 18 represents an incompressible solution, Eq. 7 now simply reads,

dp _ s
E-{-ma-—o e 20

where, a is any acceleration ; the electric current intensity, is and the potential function.
V are also related through a relation similar to Eq. 20. namely.

4
Gln+-ﬁ=0 w2l
in which, o=specific electrical resistance of the medium.

The scale factor between p and V can now be established from Eqs. 20 and 21 ;
for example, with _ :
in==ma/a ' w22

the hydrodynamic pressures will be exactly equal to the electric potentials,

In order to obtain [D] for the interface, the structure-fluid system is now replaced
by the analogue model, as shown in Fig. 2; as p=0(i.e. V=0in the analogue) at y=H,,
this surface can be represented by a heavy conductor, with respect to which all other-
potentials will be measured. Eq. 8 requires that the gradient of pressure at stationary-
boundaries vanish, i.e., as seen from Eq. 21, the current intensities at these boundaries.
in the analogue are zero ; this can be achieved by modelling the stationary boundaries
of the analogue with insulators, perspex for example. Finally, Egs. 20 and 21 indicate
that the moving surfaces must be fed with current intensities given by Eq. 22 ; simulta--
neous feeding of these currents presents practical difficulties, which can be overcome by
determining the so called ““influence matrix” of voltages for the moving surface. By
definition, an element Vy; of the influence matrix {V] represents the voltage produced’
at the i-th. node due to unit current at the j-th. node. [VI'is symmetric owing to-
the reciprocity of currents and voltages. The [V] fatrix can now be obtained by first
dividing the entire moving surface into a number of grid areas; each of these areas is
now fed with unit currents through finite electrodes (the dimensions of which are half
the grid dimensions (3, 10), while the consequent voltages at all the electrodes are
measured in turn with a precision voltmeter. These voltages are in fact elements of the
{V] matrix. The simple circuit required to obtain [V] is shown in Fig. 2. Let [W]o
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be a weighting matrix of the grid areas at the interface ; then, it is easy to see that for

“the interface,
{p}=(m/o) [V] [W]? {a} .23

'Eq. 23 obviously gives the incompressible dynamic pressures at the interface. Also
one has from Eq. 20 and the incompressible (i.e., g=0) form of Eq. 10a,

{p}=[D] {ma} .24
1t is clear from Eqs, 23-and 24 that,
[D]=(1/a) [V] [W}¢ .25

Thus, the [D] matrix can be obtained once [V] has been found and ¢ determined by
-using standard equipment.

-AN EXAMPLE

The response of a structure-fluid _system due to horizontal motion is considerably
.greater than that due to vertical motion (7) ; the response of the system of Fig. 1 was
therefore evaluated for horizontal motion. ~The following ratios were assumed :
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p/m=2'4, E/Bulk modulus of water=i13-33, Poisson’s ratio of the Dam==0'2 gad
r=1 (reservoir full condition). ‘

_ The {D] matrix was obtained by analogy, by providing the interface (Fig. 2) with
7 equal (spacing=Hy/8) finite electrodes (probes).

It is seen from Eq.17 that its solution also requires the determination of the K]
matrix; Eqs.15 and 16 show howeuer, that [K] in fact represents the magnification of”
uncoupled dynamic pressures on the  Dam, Considering the fundamental mode first,
dynamic magnification (DMF) of uncoupled pressures for this mode can be expressed by
the approximate function, ¥, given by, :

DMF=¥=1/(1—{n/n}%) e 26

in which, ne=cTy/H; and n=cT/H: T and Trare respectively period of forced motion
and fundamental natural period of the fluid-body. ny at various modes can be obtained

from (2), ) . . _
np=4/(2j—1), j=1, 2, 3, 2T

Equation 27, which is valid for the fluid body of Fig. 1, gives ny=4 for the fundamenta}

mode; using this value in Eq. 26, the approximatée DMF given by ¥ is found to agree:
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Fig. 3. Assumed and actual nd magnifications.

very well with its more accurate variation determined nufﬁerically, as seen from Fig. 3.
The function ¥ can  therefore be. substituted for [K] in-Eq. 17, which cant now be
processed for response in the fundamental mode. :

The coupled fundamental natural frequency of the system was found to be at.
n=4.46; Fig. 4 shows the coupled deflections of the Dam at some sub-fundamental
frequencies and at 209, critical damping, compared to the corresponding deflections.
obtained by the numerical processing of Eq. 17; the agreement ig seen to be very good.

. Response of the system at frequencies higher than the fundamental is relatively
unimportant from the practical point of view; however, if required, the analogy method
can aiso-be used in this instance by defining ¥ for the first harmonic mode, for example,.

as,

¥Y=1/{1-~(ng/n;?} {l—(nn/0)}} .28
in which, ny, is the value of n at the first harmonic resonance, t0 be determined from
Eq. 27; the deflection response at such a frequency is shown in Fig. 4, compared to the
corresponding numerical plot. Here again, the agreement is good,

\ 4

7
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UNCOUPLED FUNDAMENTAL FREQUENCY OF THE FLUID-BODY

For most practical situations, determination of response in the fundamental mode
is most important. 1f the method of electric analogy is used, the uncoupled funda-
mental natural frequency of the fluid-body must be known, so that [K] can be approxi-
mated. FExact theoretical values of it can be derived for the simple case considered in
this paper; however, determination of this quantity for complicated configurations
presents considerable difficulties. Fig. 5 gives the uncoupled fundamental natural
frequencies of the fluid-body for three different shapes of reservoir-Dam valley sections
commonly met in Civil Engineering practice. These were determined numerically by
assuming that the Dam could be approximated by a plate structure; this assumption is

1.O0 A
I
: H————.
: ' I:——OJJH———,-'-l
075 T : ]
_ ng=292
I ¢ . ng=3.48
.?_‘ ©.50 H
©.25 numerical
+ analogue
re=| -
o L 1]
o 4, ¢ ¢
Fig. 4. Coupled deflection at 20° critical Fig. 5. Values of n; for the fluld body
damping ; z=PPBaHY/E=(z.%4-2,2p/%. for some valley shapes.

reasonable, as the effect of mild curvature of the Dam on the fundamental natural
frequency of the reservoir was found to be small.

CONCLUSIONS

The response of a structure-fluid system due to vertical motion is of little practical
importance (7), compared to its horizontal motion. The latter can be satisfactorily
evaluated by using the. simple and compact numerical formulation presented .in this
paper. Further, the alternative simple analogy method discussed here can be used with
advantage in cases of complicated configurations. Finally, once the deflection responses
are known, stresses in the structure can be easily calculated.
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