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ABSTRACT 

An efficient seismic fragility analysis (SFA) of unreinforced masonry (URM) buildings in the 

Bayesian framework utilizing limited numbers of nonlinear time history analyses (NLTHA) results is 

explored. Specifically, the SFA approach combines a generic Bayesian linear regression based demand 

prediction model with equivalent frame model based on advance force-based fibre elements to properly 

capture nonlinear seismic response of URM buildings. The effectiveness of the proposed approach is 

compared with the fragility results obtained by other commonly used SFA approaches considering the 

most accurate direct Monte Carlo Simulation (MCS) based results as the benchmark. The SFA approach 

is numerically demonstrated by considering a typical two storey URM building. The proposed SFA 

approach provides much improved fragility estimates using limited numbers of NLTHA results with 

respect to that of obtained by the other commonly used methods when compared with the direct MCS 

based fragility results. 

KEYWORDS: Seismic Fragility Analysis, Bayesian Linear Regression, Unreinforced Masonry 
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INTRODUCTION 

Unreinforced masonry (URM) buildings are among the oldest type of constructions and numerously 

found all over the world including India. Many of such buildings are located in highly earthquake prone 

areas. The performances of URM structures are often satisfactory under normal gravity loading 

conditions. However, the poor tensile and shear strength of masonry walls made this type of structure 

highly susceptible under lateral loads. The poor performances of such structures noted in the past 

earthquakes are attest to this. Thereby, seismic vulnerability assessment of URM buildings has received 

significant research attention due to large number of dwelling in those buildings all over the globe still in 

the present days. The assessment generally includes probabilistic definition of seismic loads and structural 

strength parameters incorporating different sources of uncertainty present in the system. Seismic fragility 

analysis (SFA) in the probabilistic performance based earthquake engineering framework (PBEE) is the 

most useful tool in this regard. The present study deals with SFA of URM buildings. 

The most direct and accurate method of SFA of structures is based on direct Monte Carlo Simulation 

(MCS) technique [1-5]. In MCS, a statistical approach is employed to obtain a large number of structural 

responses from different random realizations of a structure subjected to an ensemble of ground motions 

scaled to a specific intensity level. However, such full simulation approach needs a large number of 

repetitive nonlinear time history analysis (NLTHA) of real structure to obtain acceptable confidence in 

estimated probability of failure of structure. This seems to be a computationally challenging task. Due to 

this, alternative methodologies have been proposed for efficient and reliable estimate of fragilities 

utilizing limited structural response data. In this regard, different analytical [6-8] and numerical [9-12] 

SFA approaches are worth mentioning. However, accuracy of such estimates based on a very limited 

structural response data is always uncertain. Thus, the accuracy and computational time requirement for 

SFA of structures are still an important issue. In this regard, the Bayesian approach of SFA is found to be 
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useful as the approach can furnish an estimate of uncertainty associated with such prediction. In fact, 

there is a class of literatures on SFA of structures based on Bayesian approach [13-19]. Though, the 

applications of the approach to concrete and steel structures are well known [20-24], its application to 

masonry structures is scarce. Thus, a generic Bayesian framework of SFA of URM buildings accounting 

for different sources of uncertainty is felt important. 

The present study explores a generic Bayesian regression based fragility analysis framework 

combined with equivalent frame model (EFM) approach based on advance force-based fibre element for 

efficient SFA of URM buildings. In detail, a Bayesian linear regression (BLR) based demand prediction 

model is applied integrating both the record-to-record variation of seismic motions and uncertainties 

related to model parameters. The dispersion in the responses due to record-to-record variations is taken 

care of by selecting a bin of earthquake records based on the hazard level as identified from the 

probabilistic seismic hazard analysis of the location of the building. The ground motion intensity is 

included as an added dimension to the BLR model for efficient fragility computation. Thus, the response 

approximation is not conditional to a specific intensity of earthquake but depends on the structural 

properties as well as the level of seismic intensity. To incorporate different sources of uncertainty, 

random realizations of the considered building are generated based on the probability distributions of the 

random structural parameters and combined using Latin hypercube sampling (LHS). The seismic 

responses of the building are obtained from NLTHA. The mean fragility along with its dispersions are 

estimated based on log-normal fragility model. The probability distributions of the model parameters are 

obtained by the joint posterior simulation of the parameters by Markov chain Monte Carlo (MCMC) 

simulation using Gibbs sampling technique. The approach estimates the underlying conditional 

distributions of seismic demand model parameters and fragilities as well as furnishes a confidence bound 

that represents the degree of uncertainty associated with estimated fragility. The SFA approach is 

elucidated numerically by considering a typical two storey URM building. The estimated fragilities are 

compared with those obtained by the two most commonly used methods i.e. the conventional power 

model and the maximum likelihood estimates methods considering the fragility estimates by the most 

accurate direct MCS technique as the benchmark. 

ANALYTICAL SFA APPROACHES IN THE PBEE FRAMEWORK 

To investigate the effectiveness of the proposed BLR based SFA approach for URM buildings, a 

comparative study is made with the fragility estimates obtained by the conventional power model and by 

the maximum likelihood estimates. Thus, before presenting the BLR based SFA approach, these two 

conventional approaches are briefly discussed first in the following sub-sections. 

1. SFA Using the Conventional Power Model 

A widely used method of analytical SFA is based on a power law relation between the median 

seismic demand and the ground motion intensity, commonly known as cloud method [6, 25]. The 

approach fits a linear regression model between seismic demand and ground motion intensity (IM) in 

logarithmic space. Based on this, the fragility is estimated as, 
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   is the logarithmic dispersion of the demand. ln C  and 

ln C  represent the median and the dispersion of the logarithm of capacity parameter, 𝐶. The above 

fragility estimation model cannot explicitly consider the structural parameter uncertainty i.e. ln C and 

C  are required to be obtained from a separate capacity analysis e.g. by random pushover analysis      

[25, 26]. In further discussions, this approach is referred as the ‘cloud’ method. 
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2 SFA Using Maximum Likelihood Estimates 

The application of maximum likelihood estimates of fragility parameters to obtain analytical fragility 

curves is quite notable [7, 27, 28]. In this method, the fragility parameters associated with the highest 

probability of observing failure is obtained for a particular limit state. For any IM level, iIM x , if a 

structure exceeds a limit state for ‘k’ number of ground motions out of total ‘N’ numbers, the likelihood 

function can be represented as, 
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where, ik is the observed numbers of failure at ith intensity level, ( )RF x is the lognormal fragility function 

and ‘M’ is the total number of IM levels considered. The maximum likelihood estimates, ˆˆ( , )a am   of the 

fragility parameters ( , )a am   can be obtained by maximizing the likelihood function. From 

computational point of view, it is easier to obtain the maximum likelihood estimates of ˆˆ( , )a am   by 

solving an optimization problem to maximize the   log-likelihood as, 
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Finally, the fragility is estimated as, 
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The method does not require a demand prediction model; rather the fragility is estimated directly 

from observed failure data. However, it may be noted here that to obtain survival failure data for a 

varying range of ground motion intensities, repeated scaling of ground motions at each of the considered 

intensity levels is necessary, which requires considerable computational time. This approach is referred as 

the ‘likelihood’ method in further discussion. 

3 SFA by the BLR Model 

If, 1 2( , , , )TNy y yY  is a set of N  independent response values obtained from N numbers of 

NLTHA and 1 2= ( , , , )p  θ  represents a vector of ‘p’ random structural parameters, then the 

expected value of ln Y  can be represented as a linear function of θ and ln aS  as, 
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where, 0  is the intercept, j  are the coefficients associated with the random structural parameters 𝛉, 

Sa  is the coefficient associated with aS  values and (.)E  indicates statistical expectation. The above 

equation can be represented in a more compact form as, 
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X is a ( 2)N p  matrix and β  = 0 1( , , , , )Tp Sa
    . 

It may be noted that the ground motion intensity parameter aS  is combined with the set of random 

structural parameters θ as a predictor variable of the regression. The rows of X  represent different 
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random realizations of the structure and can be readily generated by LHS. For N  such random 

realizations, vector of N response values Y  can be obtained by performing N  numbers of NLTHAs 

taking one random realization i.e. one row of X  at a time. Therefore, the approach requires only N  

numbers of NLTHA to incorporate both the sources of uncertainty in an efficient way to estimate 

fragility. 

The linear regression model as presented above can be cast in a Bayesian perspective by posterior 

simulation of the parameters of the model. Assuming that the observation errors are independent with 

equal variance, the probability distribution of ln Y can be represented as, 
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technique can be appropriately applied for posterior simulations of the parameters. 

4 Posterior Distribution of Demand Parameters 

Following Bayesian updating concept, the joint posterior distributions of the model parameters can be 

represented as the product of the joint likelihood and the prior density as, 
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likelihood function and a non-informative prior distribution is adopted here for posterior simulation of the 

model parameters. For known values of 
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In Bayesian inference problem, choice of prior distribution plays an important role. The commonly 

adopted prior distributions are the noninformative prior and the conjugate prior [15]. Using conjugate 

prior distribution, the posterior distribution can be obtained in closed form. However, to achieve this, the 

prior knowledges about the distribution parameters are required. If no such specific information is 

available on the prior distribution of the model parameters, the assumption of a non-informative prior 

distribution can be a reasonable choice. It results in a proper posterior distribution in many practical cases 

where there are more number of available  data  comparative to the number of model parameters [15]. An 

useful choice of non-informative prior for normal regression model is uniform on 
2
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Then, the posterior density in Equation (8) can be computed by marginal and conditional simulation 
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The above is a multivariate normal distribution, 
2
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squares estimate of the BLR model parameters presented in Equation (5) and can be obtained as, 
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Using Equation (11) and Equation (12), 
2
ln

( | ln Y)P 
Y can be obtained as [13], 

 

/21 2 2( 1)
2 2
ln ln 2

ln

( | ln ) exp
2 2 2

s s
P


  

 


                       
Y Y

Y

Y Γ  (15) 

where, (.)Γ  represents the Gamma function. The above distribution is a scaled 2inverse-  distribution 

with 2N p     degrees of freedom and the scale parameter, 
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MCMC simulation technique which is presented in the following section. 

5 Estimation of BLR Model Parameters 

The MCMC simulation technique can generate random samples directly from the posterior 

distribution of the model parameters. The commonly used MCMC sampling techniques are the 

Metropolis-Hastings algorithm [21, 29], Gibbs sampling [30] and advanced samplers like Hamiltonian 

Monte Carlo [31] and NUTS (No-U-Turn sampler) [32]. The present study adopts the Gibbs sampling 

technique in which the posterior samples are generated by sweeping through each variable from its 

conditional distribution while keeping remaining variables fixed at their current values. The main 

advantage of Gibbs sampling is that it has 100 % acceptance ratio. If the conditional distribution of the 

parameters is known, Gibbs sampler converges very fast compared to other conventional MCMC 

algorithms. From the BLR model, the posterior samples of 
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the coefficient vector β̂  from 
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β  using Equation (12). However, as the algorithm is 

initiated with random seeds, the initial samples may not be true representative of the samples from the 

actual posterior distribution. Hence, it rejects some of the initial samples as burn-in. 

Once the posterior statistics of β  and 
2
ln


Y  are obtained, the mean values of ln Y  can be estimated 

for varying levels of seismic intensity. To do so, for a particular aS x , the other parameters of the linear 

regression model in Equation (5) is kept at their mean values and the mean response can be estimated as, 
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where, ,j meanθ  is the vector of the mean values of the structural random parameters. Now, using the 

simulated values of ln Y  and 
2
ln
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Y , for any chosen intensity value ‘ x ’, the mean fragility fP  and its 

standard deviation can be obtained as, 
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where, m  is the total number of generated posterior samples after rejecting the burn-in. From the 

knowledge of fP  and 
Pf

 for different values of ‘ x ’, the mean fragility curve and its confidence 

bounds i.e. f PP
f

 and 2f PP
f

 etc. can be obtained readily. 

For SFA of URM buildings in the PBEE framework, NLTHA of URM building is required to be 

carried out which needs appropriate modelling of URM building components with due consideration to 

nonlinear behaviours. The EFM approach is adopted [33] in the present study for this purpose. The 

masonry force deformation behaviour and the adopted EFM for SFA of URM buildings are presented in 

the following section.  

MODELLING OF URM BUILDINGS 

The numerical modelling of URM buildings for structural response assessment always remains a 

challenging task due to large variation in structural properties, heterogeneity of constructions, complex 

interaction between axial, lateral and bending forces in the masonry walls along with the complex joint 

behaviour. In the present state-of-the-art method, the modelling of URM buildings mainly follows two 

modelling approaches, namely the micro-element model and the macro-element model [34, 35]. In  

micro-element modelling approach, the components of masonry building are discretized into separate 

bricks and mortar along with their interface (discrete model) or by continuum model considering masonry 

unit as a homogeneous material. The Finite Element (FE) analyses of such models have shown accuracy 

in capturing the behaviour of the URM structures under lateral loads when compared with the 

experimental results [36, 37]. However, the time required for modelling and analysis of such detailed FE 

models makes the approach quite impractical for large scale analysis effort involved in SFA. The macro 

element model, on the other hand, being a balance between the accuracy and efficiency has become a 

more popular choice for SFA of URM structures involving large number of analysis effort. The EFM is 

noted to be the most widely adopted approach in this regard [38-40] where the wall components are 

modelled as equivalent beams and columns. Such models are much easier to implement and consume 

considerably less time for both modelling and analysis. This type of model, though with some limitations, 

are highly capable of producing efficient response results when compared with the results obtained from 

more complex micro element models [41]. In the present study, a fibre-section based EFM [33] is 

adopted. The analytical model is developed in the open source finite element program OpenSees [42]. For 

effective presentation of the model, the different in-plane failure modes of URM buildings under lateral 

loads are discussed first and in the subsequent section, the EFM for nonlinear seismic response analysis of 

URM building is elaborated. 

1. Failure Modes of URM Buildings Subjected to In-plane Loading 

Strength and deformation characteristics of masonry walls vary considerably depending on the 

materials used for construction. A large number of experimental tests have been carried out on full scale 

masonry walls and masonry buildings to understand their behaviour under lateral and cyclic loads        
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[40, 43, 44]. The experimental tests reveal that the failure of URM walls due to in-plane loading are 

mainly due to the effect of interaction between axial and lateral forces in the walls, aspect ratio, end 

condition of piers and spandrels and the material characteristic of the components. Based on the 

observations, three primary modes of failure of an URM wall under in-plane loading can be identified as 

following. 

(i) Rocking Failure: Rocking failure occurs in piers under lateral loads when compressive stress at the 

highly compressed edge of a pier reaches compressive strength of the masonry [Figure 1(a)]. Rocking 

moment capacity is highly influenced by the level of axial force present in piers and mostly governs the 

failure of slender piers. The rocking moment capacity of a pier can be expressed as [39], 
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where, 0  is the average axial stress present in the pier, df  is the compressive strength of the masonry, 

‘k’ is a factor considered as 0.85 and ‘D’ and ‘t’ are the width and thickness of the wall. 

(ii) Diagonal Shear Failure: Diagonal shear failure occurs when the principal tensile stress developed in a 

wall under combined action of axial and lateral loads exceeds the tensile strength of masonry          

[Figure 1(b)]. The criteria for diagonal shear failure can be expressed as [45], 
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where, 0v df  is the design shear strength of masonry wall at zero axial stress,   is a coefficient related to 

aspect ratio ( /v H D  ) of the pier which may be taken as 1.5 for piers with v  greater than             

1.5 and 1.1 for v  less than 1.0 [44]. 

(iii) Bed-joint Sliding: Failure due to bed joint sliding occurs if the shear stress at bed joint exceeds its 

shear strength resulting in separation of walls from the bed joint [Figure 1(c)]. This type of failure is 

predominant at low level of axial stresses in piers. The bed joint shear strength of URM wall can be 

obtained from [44], 
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where,   is the sliding friction coefficient of masonry bed joint. 

 

Fig. 1 Failure modes of masonry walls (a) rocking failure, (b) diagonal shear failure, and 

(c) bed joint sliding failure 

2 The Equivalent Frame Model (EFM) of URM Buildings 

In the EFM, a masonry wall is represented as an equivalent frame made of vertical (pier) and 

horizontal (spandrels) elements with rigid intersecting joint elements. The walls and beams are linked to 

each other by means of rigid joints in order to take into account the actual finite width of the wall. In this 

regard, it may be noted that it is important to properly model the rigidity of the beam column joints to 

simulate the local joint behaviour during analysis. In this regard, the rigid offsets (RO) concept provides 

good approximation [46]. Following Dolce [47], the height of a pier can be obtained as, 
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The values of h , H , D  and the length of rigid offset can be obtained as depicted in Figure 2(a)    

and (b). 

 

 

(a) (b) 

Fig. 2 (a) The equivalent frame modelling of a typical masonry wall showing length of 

rigid offset, and (b) definition of effective height of piers 

In the present study, the piers and the spandrels of the EFM are represented by fibre beam-column 

element in the OpenSees and the rigid joint behaviour is modelled by using rigid links. The adopted 

macro-modelling approach couples a force-based fibre beam column element with a phenomenological 

shear law [33]. The failure occurs through a mechanism that has lowest capacity among the mentioned 

failure modes. The bed joint sliding failure mode is not considered as the other two failure modes 

primarily govern the failure mechanism. The shear force and shear strain responses of the masonry walls 

are modelled in the OpenSees using trilinear hysteretic uniaxial material constitutive law. The three 

significant points on the trilinear hysteretic curve represent the end of elastic response ( , )y yV  , the peak 

shear strength ( , )n nV   and the ultimate shear response ( , )u uV  , respectively (Figure 3). The results of 

experimental study on in plane shear response of masonry walls reveal that the amount of axial force 

present in piers significantly influences the response of shear walls [33]. Due to dynamic action of 

seismic forces, a large variation of axial forces occur in the masonry piers [43]. Thus, it is important to 

efficiently capture the variation of shear strength of the piers due to dynamic action of earthquakes. 

However, the adopted shear law is invariant to the axial forces present in the piers. In order to overcome 

this limitation, the theoretical shear strength domain of the piers are defined by the minimum of the 

flexural and shear capacities obtained from Equation (20) and Equation (21) for varying levels of axial 

forces [33]. From the rocking moment capacity, the equivalent shear capacity is obtained assuming the 

piers as fixed at both ends. This results in a shear span equal to the half of the element. The intersection of 

the rocking moment capacity and the diagonal shear capacity curve defines the boundary between the 

flexural and the shear strength domain as explained in Figure 4 [33]. When the gravity load present in the 

piers (resulting from self-weight and weight of the floors) are less than limitN , the failure mode is 

governed by the rocking failure and the peak shear strength is defined by the intersection of the flexural 

and shear strength domains [Figure 4(a)]. When the gravity load is greater than limitN , the shear strength 

is defined by the shear force corresponding to limitN  in the shear strength domain [Figure 4(b)]. For 

spandrels, the shear strength is conservatively calculated from Equation (21) assuming a homogeneous 

cross section with zero axial stress. 
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Fig. 3  The shear behaviour law 

 

Fig. 4  Pier strength domains 

NUMERICAL STUDY 

A typical two storey URM building is taken up for numerical demonstration. The plan view of the 

considered building is shown in Figure 5(a). A typical wall (wall ‘A’ as shown in Figure 5(a) is extracted 

for SFA. Figure 5(b) shows the elevation of the wall. 

 

 
(a) (b) 

Fig. 5  (a) The plan of the case study building, and (b) the elevation of the wall ‘A’ 

The equivalent frame idealization of the wall components is shown in Figure 6(a). For conservative 

estimate, resistances offered by the orthogonal walls are not considered. The different parameters required 

to determine shear strengths of EFM elements are shown in Table 1 [33].  To define the shear behaviour 
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law, the yield shear strength ( yV ) and the ultimate shear strength ( uV ) are assumed as 60 % and 50 % of 

the peak strength ( nV ), respectively [33]. The yield shear strain ( y ) is obtained as, 

 
.

.

y
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m

k V
c

AG
   (24) 

where, sc (= 2.0) is a correction coefficient, k  is the shear coefficient (1.2 for rectangular cross section), 

A  is the total cross sectional area and mG  is the masonry shear modulus. The shear stain corresponding 

to the peak shear response ( n ) and the ultimate shear strain ( u ) are assumed as 0.0015 and 0.01, 

respectively [33]. 

Table 1:  The various mechanical properties of URM walls 

Mechanical properties Values 

Masonry Self weight 18.35 kN/m3 

Shear Modulus ( mG ) 480 MPa 

Compressive Strength ( df ) 6.2 MPa 

Shear Strength ( 0v df ) 0.18 MPa 

The shear strengths of different piers and spandrels are obtained for different failure modes. The 

various points of the trilinear hysteretic curve are obtained accordingly. For rocking mode, the rocking 

moment capacities are first obtained from Equation (20) and the equivalent shear capacities are then 

obtained by dividing the moment capacities with 0H , where 0H  corresponds to the half of the length of 

the pier element [Figure 6(b)]. The floor and roof diaphragms are made of reinforced concrete slabs and 

connected to the walls using steel studs. Assuming a good connection between the floor and the roof with 

the walls, the floor and roof diaphragms are considered as rigid in their own plan and the corresponding 

rigid behaviour is simulated in the model using ‘equal degrees of freedom’ constraint in the OpenSees 

along the horizontal direction at the floor and roof levels [33]. The EFM so developed is used to obtain 

the nonlinear seismic responses of the frame. 

 

 

(a) (b) 

Fig. 6 (a) The equivalent frame idealization of the case study structure, and (b) typical 

bending moment diagram of masonry wall showing distance of zero bending 

moment from top and bottom restrains 

The SFA of the URM wall is performed using the BLR model. Also, to study the efficiency of the 

proposed approach, the estimated fragility obtained by the present BLR approach is compared with those 

estimated from the most commonly used analytical SFA approaches as mentioned in section 2. The 

fragility estimated by the most accurate direct MCS method is considered as the benchmark for 
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comparative study. In the present study, the example URM building is considered to be located in the 

Guwahati city of Northeast India, one of the seismically most active regions of the world. Ground motion 

bin is prepared based on the hazard level of the location. It has been shown that the minimum numbers of 

ground motion records required to accurately estimate the fragility is twenty when 𝑆𝑎  is used as the       

IM [47]. Based on this, twenty-four numbers of ground motions are used to incorporate record to record 

variations. Due to limited availability of recorded acclerograms specific to the hazard level of the study 

location, the choice of natural ground motions is limited to eight numbers. These are selected from the 

past earthquake data covering a moment magnitude ranging from 6.0 to 8.0 and epicentral distance within 

300 km for rock site. But, for a statistically meaningful study, sufficient numbers of ground motions 

should be considered. Thus, to augment the ground motion database, acclerograms are further generated 

synthetically and artificially. The stochastic point source model as proposed by Boore [48] is used for 

generation of eight synthetic accelrograms. Further, eight artificial acclerograms compatible to the 

acceleration response spectra for rock and hard soil for 5 % damping [49] are generated. More details on 

the ground motion generation can be found in [26, 50]. 

The seismic responses are obtained through NLTHA of the EFM of the considered wall. Four 

uncorrelated random variables, θ=( )         representing the uncertain structural parameters as 

depicted in Table 2 are considered. The distribution types of the random structural parameters and the 

values of coefficient of variation (COV) are adopted from Park et al. [51]. The spectral acceleration, aS  

is also considered as a random variable uniformly distributed over spectral acceleration range from       

0.1 g to 2.0 g. Twenty-four random samples of θ and aS  are generated and combined using LHS with 

reduced correlation to form the input matrix, X. Thus, each row, 1 4 ,( , , , )i i i a iS X , 1,2, ,24i   of 

the input matrix X represents a random realization of the structure associated with a particular 𝑆𝑎 value. 

The generation of random samples of the structural parameters and the 𝑆𝑎 values are performed together 

by using LHS. For each iX , a random ground motion is selected from the bin and scaled to the 

corresponding aS  value. The NLTHA is performed for each of such realization of the structure 

providing a vector of twenty-four observed demand values Y . 

Table 2:  Details of the uncertain parameters of the URM building 

Random parameters Distribution Mean COV 

Masonry Self-weight (kN/m3) Lognormal 18.35 0.05 

Compressive Strength (MPa) Lognormal 6.2 0.25 

Shear Strength (MPa) Lognormal 0.18 0.20 

Damping (%) Uniform 5.0 0.115 

Now, with the knowledge of Y  and X , the BLR is performed following the procedure explained in 

section 2. In the present study, 5000 posterior samples of the parameters 
2
ln

( , )
Y

β  are simulated using 

MCMC simulation technique and initial 1000 samples are rejected as burn-in samples. The typical joint 

posterior samples of ln Y  and ln Y  as obtained from MCMC simulation for aS = 0.5 g are shown in 

Figure 7(a). The corresponding distributions of ln Y  and ln Y  are also plotted in the corresponding 

axes. To compare the distribution of the generated samples with respect to the actual values, the values of 

these parameters are also estimated by direct MCS. For this, 10000 random realizations of the structure 

are generated by LHS according to the distributions of the parameters as described in Table 2. Now, each 

realization of the structure is associated with a randomly selected ground motion from the bin scaled to a 

particular aS  level and NLTHA is carried out accordingly. The procedure is repeated for different aS  

levels. The mean and the standard deviation of the demand values are estimated for each of such aS  

levels. The estimated values of the mean and the standard deviation of the demand values as obtained 

from the direct MCS method for aS = 0.5 g is shown in the same plot (star symbol) for comparative 

study. It can be noted that the distribution of the generated posterior samples by the MCMC method are 

almost centred around the most accurate estimated values obtained by the direct MCS.  The actual 

demand values obtained from NLTHA along with the fitted mean and its ln Y  and ln2 Y  
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confidence bounds obtained by the BLR model are shown in Figure 7(b). It can be seen that the obtained 

responses from NLTHA are almost evenly distributed on both sides of the estimated mean demand line 

and most of the data points are contained within the confidence bounds. 

 

Fig. 7 (a) The posterior samples of 
2

ln ln
| Y Y and ln Y  for aS =0.5 g, and (b) the 

predicted mean demand line along with its ln2 Y  confidence bounds 

For demonstrating the fragility assessment by the proposed BLR framework, three structural 

performance levels, namely the Immediate Occupancy (IO), Life Safety (LS) and Collapse Prevention 

(CP) are considered. The IO, LS and CP levels correspond to the maximum inter-storey drift threshold 

values ( Ld ) of 0.3 %, 0.6 % and 1.0 %, respectively FEMA356 [52]. The IO level is defined as the limit 

state where minor cracking and spalling in veneers at a few corner openings are observed but no 

observable out-of-plane offsets. In the LS level, extensive cracking in veneers noticeable in-plane offsets 

of masonry and minor out of-plane offsets are observed. In the CP performance level, extensive cracking 

in veneers, peeling off of face course and veneers and noticeable in-plane and out-of-plane offsets are 

observable. 

For each of the simulated pairs of 
2
ln

( , )
Y

β  for varying level of aS , the mean fragility ( )fP and its 

f PP
f

  and 2f PP
f

  confidence bounds are obtained by using Equation (18) and (19). To study 

the effectiveness of the proposed SFA approach for URM buildings, a comparative study is made with the 

fragility estimate obtained by the commonly used cloud method and likelihood method. In the cloud 

method, unscaled ground motions from the bin are used for NLTHA and the structural responses are 

obtained for each of them. The demand parameters are obtained from the regression as explained in 

section 2.1. The median capacity values ( lnC ) are considered as the threshold values for each limit 

state. The dispersion of the capacity ( lnC ) values are assumed as 0.2, 0.3 and 0.4 for IO, LS and CP 

limit states respectively [53]. With the knowledge of the demand and capacity parameters, fragility curves 

are generated accordingly. For the likelihood approach, twenty-four random realizations of the structure 

are generated by LHS and each of these is associated with a randomly selected ground motion from the 

bin. The NLTHA is carried out for each of the realizations at different aS  levels. For this, seven aS  

levels are considered as 0.3 g, 0.5 g, 0.8 g, 1.0 g, 1.2 g, 1.5 g and 1.8 g. For each aS  level, the number of 

ground motions exceeding the limit states is obtained. The fragility parameters are estimated by 

maximizing the likelihood function as explained in section 2.2. It may be noted that the most commonly 

used cloud method requires the same numbers of NLTHA as required by the proposed approach. 

However, the accuracy of the cloud method is not satisfactory. Moreover, the cloud method needs a 

separate capacity analyses to obtain the statistics of the capacity parameters. The accuracy of the 

likelihood method is satisfactory in general. But, the total 168 numbers of NLTHAs (24 structural 
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samples for 7 intensity scales) are required by the likelihood method. Thus, with respect to the 

computational time and accuracy, the proposed approach shows significant improvement over the existing 

analytical SFA approaches.  Figure 8 compares the fragility results obtained by the different approaches. 

It can be noted from these plots that the BLR model estimates the fragility with improved accuracy 

employing very limited numbers of NLTHA compared to the other two mostly used analytical methods. 

Though at IO limit state, the differences are small in the estimated fragilities by the three approaches but 

at LS and CP limit states the estimated fragilities by the cloud and the likelihood approaches deviates 

significantly from the direct MCS based fragility estimates. However, in all the cases, the proposed 

approach is consistent with accuracy. The f PP
f

  and 2f PP
f

  confidence bounds of the fragility 

curves become wider for higher limit states (LS and CP) denoting the increasing level of uncertainties in 

the fragility estimates for higher limit states. It is observed that the confidence intervals are appeared to be 

high. This is due to the limited number of data used for the analysis. Thus, higher uncertainty is involved 

in the prediction of the mean demand and the fragility. However, if required, the confidence interval can 

further be reduced by using more data for the analysis by using more numbers of ground motions. It is 

generally noted from the fragility curves that the considered URM building is highly vulnerable under 

earthquakes having aS  values greater than 0.5 g for all the limit states. This is mainly due to the poor 

tensile and shear strength of URM walls. Thus, more in-depth exploration of seismic vulnerabilities of 

such structures is required for earthquake prone areas. 

 

Fig. 8 The fragility results obtained by different methods for (a) IO, (b) LS, and (c) CP 

limit states 

CONCLUSION 

A BLR based SFA approach is explored for URM buildings. The proposed approach combines a 

generic Bayesian framework with an advanced force based fibre EFM for SFA of URM structures. The 

effectiveness of the proposed SFA approach is demonstrated by comparing the fragility estimates by the 
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proposed approach with those estimated by the other commonly used SFA approaches, considering the 

most accurate direct MCS based fragility estimate as the benchmark. From the generated fragility curves 

of the example structure, it is clearly noted that the proposed approach is able to estimate the fragility 

with improved accuracy employing very less amount of computational effort. It is generally noted from 

the present study that low rise URM buildings located in earthquake prone areas are highly vulnerable 

against earthquake excitations. This is mainly due to the poor tensile and shear strength properties of 

URM walls. Thus, proper assessment of seismic vulnerabilities is required for design and construction of 

URM structures and also for seismic vulnerability assessment of existing URM structures. Though the 

SFA of URM structures is demonstrated here for a typical low rise URM building, the proposed SFA 

approach combined with the adopted fibre EFM is generic enough to be readily applied for SFA of any 

other type of structures. With the knowledge of mechanical properties of the considered URM building, 

the model can easily be implemented in any structural analysis software with nonlinear analysis 

capability. The measure of uncertainty obtained from the proposed analysis method can provide the 

designer required confidence level on the fragility estimate which the conventional methodologies cannot 

provide. 
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