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ABSTRACT 

In this paper, the response behavior of two parallel single-degree-of-freedom structures connected 

with Maxwell damper is studied under base acceleration modeled as a non-stationary random process as 

well as stationary white-noise random excitation. The governing equations of motion of the connected 

structures are formulated and root mean square responses (relative displacement and absolute 

acceleration) are obtained. The responses are obtained considering 1000 ground motion realization using 

Monte Carlo simulation. The influence of parameters such as relaxation time of damper, frequency, and 

mass ratio of structures on the performance of damper is investigated. For undamped coupled structures, 

the closed-form expressions for optimum damper damping for the minimum value of mean square relative 

displacement and absolute acceleration of either of coupled structures are derived. 
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INTRODUCTION 

Earthquake ground motions transmit additional energy input to structures and sometimes structure 

becomes more susceptible to inelastic deformation. The inelastic deformation leads to non-structural as 

well as structural damage and sometimes catastrophic failure. The conventional design approach of 

designing a structure with adequate ductility to absorb excess energy during natural disturbances, 

sufficient strength to withstand natural forces and appropriate stiffness to maintain structural integrity and 

serviceability, allows inelastic cyclic deformations in specially detailed regions of a structure.  It provides 

the minimum level of protection to the structures and may render a structure irreparable. The seismic 

protection of structures is a challenging task for the civil engineering community. The use of energy 

dissipation devices and control mechanisms into the structure is another approach for seismic protection 

of structures. These control strategies can dynamically the response of the structure in a desirable manner, 

thereby termed protective systems for the new structures. Moreover, existing structures can be retrofitted 

or strengthened effectively by structural control to withstand future seismic activity. Housner et al. [1] 

presented the tutorial/survey paper on Structural Control: Past, Present, and Future. They have discussed 

the passive control, active control, semi-active control, hybrid control, sensors for structural control, smart 

material systems and health monitoring and damage detection. Soong and Spencer [2] presented the state-

of-the-art and state-of-the-practice on supplemental energy dissipation devices. They also describe the 

advantages and limitations of supplemental energy dissipation devices in the context of seismic design 

and retrofit of civil engineering structures. Dutta [3] presented a state-of-the-art review on active control 

of structures. The review includes the theoretical backgrounds of different active control schemes, 

limitations, and difficulties of their practical implementation and a brief introduction on semi-active 

control. The above review and some other studies confirm the efficacy of seismic protection of the 

structure using energy dissipation devices. Commonly used passive energy dissipation devices are friction 

dampers, viscous dampers, viscoelastic dampers, metallic yielding dampers, lead extrusion damper, tuned 

mass, or tuned liquid dampers. Full-scale damper tests and analysis in 5 story steel frame Kasai et al. [4], 

the current status of passive control of buildings in Japan Kasai et al. [5]  and other past study confirm 

that the passive control devices are found to be effective for seismic response control of structures [6].  

The excellent treatises by Soong and Dargush [7] and Constantinou et al. [8] give more complete details 

on the mechanics and working principles of these devices. The fluid viscoelastic device operates on the 

principle of resistance of viscous fluid flow through specially shaped orifices. To simplify the 

mathematical analysis, the force deformation relationship of fluid orifice damper is often modeled by the 



58 Random Response Analysis of Parallel Structures Connected with Maxwell Damper 

 

linear viscous model, in which the damper force is directly proportional to the relative velocity of damper 

ends. Such model gives rise to damping forces that are out-of-phase with deformation and deformation 

dependent forces. At higher frequencies of deformation, the damper force of majority orifice dampers 

would be displacement dependent and thus provide stiffness to the system. Different mathematical models 

have been proposed which capture this frequency-dependent stiffening behavior of fluid orifice damper. 

The experimental investigation by Constantinou and Symans [9] on seismic response of buildings with 

supplemental fluid dampers shows that the fluid damper exhibits viscoelastic fluid behavior. To account 

for this viscoelastic behavior, the simplest model is the Maxwell model in which the force-deformation 

relationship is described by a first-order differential equation. The frequency-dependent characteristic is 

introduced by the spring element in series with the viscous dashpot. Makris and Constantinou [10] 

proposed the Maxwell model for seismic isolation of building structures and validated it by dynamic 

testing. Singh et al. [11] presented the optimal distribution and the parameters of the Maxwell damper in a 

structure subjected to seismic excitation using a gradient-based optimization scheme. Lewandowski and 

Chorazyczewski [12] presented the methods for the identification of the parameters of the Maxwell 

fractional model and Kelvin-Voigt fraction model. Greco and Marano [13] presented the parameter 

identification for basic and generalized Kelvin-Voigt and Maxwell models for fluid viscous dampers 

using particle swarm optimization.  The parameters of the generalized Maxwell model from the fraction 

Zener model have been determined based on the equivalence of complex modulus in the frequency 

domain and presented a detailed comparison of the performance of generalized Maxwell model and 

fractional Zener model [14]. 

Interactions between existing neighboring inadequately separated buildings are frequently recurrent 

problems during the strong earthquake. Due to different dynamic properties, adjacent structures can 

vibrate out of phase during earthquake excitations and creates relative displacement problems. The 

various problems are like, a collapse can occur when the common vertical support share by structures and 

the distance between supporting structures increases, for example falling off bridge deck from supports. 

When the distance between vibrating structures decreases, pounding of the structures may occur, a more 

dangerous condition during an earthquake [15]. The restrainer provided to limit the separation distance 

between adjacent structures are subjected to severe puling which may result in local failure and/or 

undesirable inertia forces transfers from one segment to the other one of the bridge [16]. Amongst various 

structural control techniques, connecting parallel structures by passive energy dissipation devices (when 

possible) is an effective alternative for seismic response mitigation. The concept is to exert control force 

upon one another to reduce the overall response of the dynamically dissimilar coupled structures. But it 

alters the dynamic characteristics of the unconnected structures. It enhances undesirable torsional 

response when the structures have asymmetric geometry and increase the base shear of the stiff structure. 

In certain situations, the free space available between parallel structures can be effectively utilized for the 

installation of control devices. 

Zhang and Xu [17] studied the random seismic response of adjacent buildings linked by dampers 

using the state-space method and pseudo-excitation method. The effectiveness of the fluid damper and 

beneficial damper relaxation time and damping coefficient at zero frequency have been investigated. An 

experimental seismic study of adjacent buildings with fluid dampers was carried out by Yang et al. [18]. 

The fluid damper control force was considered the linear force-velocity property. The results showed that 

the fluid damper of proper parameters could significantly reduce the seismic response of connected 

buildings while the natural frequencies of both buildings remained almost unchanged. It was also 

observed that to achieve good control performance, the number, location, and linking pattern of fluid 

dampers should be properly selected. Zhu and Xu [19] presented the analytical formulae for the response 

of adjacent single-degree-of-freedom (SDOF) structures connected by the Maxwell model. The optimum 

damper parameters have been derived using the principle of minimizing the averaged vibration energy of 

the coupled system. Matsagar and Jangid [20] presented the seismic response analysis of base- isolated 

adjacent buildings connected with visco-elastic dampers. The analysis results show that for the existing 

under-designed fixed base structure, the base isolation of both or one of the adjacent building found 

advantageous in the retrofitting works. Bhasakararao and Jangid [21] have studied the dynamic behavior 

of two adjacent SDOF structures connected with a viscous damper. The close-form expressions are 

derived for optimum damper damping and corresponding steady-state mean square displacement and 

absolute acceleration response of either of the connected structure. Patel and Jangid [22] investigated the 

performance of Maxwell dampers connecting two adjacent multi-degree-of-freedom (MDOF) structures 

under real earthquake excitations. Zhu et al. [23] presented the optimized parameter of connecting 
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dampers between two adjacent structures. The optimization criteria are minimizing the vibration energy 

of both the structure as well as minimizing the vibration energy of the primary structure. Milanchian et al. 

[24] investigated the performance of viscous and viscoelastic link interconnecting the vertically isolated 

structures. An earthquake phenomenon is random in nature, so probabilistic analysis of the energy 

dissipation device connected parallel structures system subjected to random process gives more 

appropriate results. In this paper, the response behavior of parallel SDOF structures connected by 

Maxwell model-defined fluid damper subjected to a non-stationary random process is investigated. The 

analytical expression for harmonic transfer function for displacement and absolute acceleration response 

of either of the connected structure is presented. The response of the coupled structure subjected to non-

stationary as well as a stationary random process is analyzed. The effect of various system parameters on 

the performance of damper is evaluated. The close-form expression for optimum damper damping and the 

corresponding mean square responses under stationary white noise random excitation is obtained. 

PARALLEL STRUCTURES CONNECTED BY MAXWELL DAMPER 

Let us consider two parallel SDOF structures connected with the Maxwell model defined fluid 

damper as shown in Figure 1, referred to as Structure 1 and 2, respectively. The coupled structures are 

symmetric with their symmetric planes in the alignment. The ground motion is to occur in the direction of 

the symmetric planes of the structures. The ground acceleration under both structures is assumed to be the 

same. The considered parallel structures is modeled as a linear SDOF system and due to the significant 

increase of energy absorbing capacity the structures can retain elastic and linear properties under the 

ground motion excitation. The effect of soil-structure interaction is neglected. Let 1 1 1, ,m k c  and 

2 2 2, ,m k c  be the mass, stiffness and damping coefficient of the Structure 1 and 2, respectively. Let 

1 1 1k m   and 2 2 2k m   be the circular frequencies and 1 1 1 1/ 2c m   and 2 2 2 2/ 2c m   

be the damping ratios of Structures 1 and 2, respectively. Let us consider two parameters mass ratio (  ) 

and frequency ratio ( ) of the connected structures defined as 
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The damper force df  can be described by the first order Maxwell model proposed by Bird et al. [25] 

given as  
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d d r

df
f c x

dt
    (3) 

  is the relaxation time defined by 

 d dc k   (4) 

where dc  is the damper damping coefficient at zero frequency, dk  is the damper stiffness coefficient and 

rx  is the relative velocity of damper ends. The non-dimensional damping ratio at zero frequency ( d ) 

and relaxation time (  ) are defined as 
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The governing equations of motion for the damper-connected system can be written as 

 
1 1 1 1 1 1 1d gm x c x k x f m x        (7) 

 
2 2 2 2 2 2 2d gm x c x k x f m x        (8) 
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where 1x  and 2x  are displacement response relative to the ground of Structure 1 and 2, respectively; over 

dot represent time derivative; and 
gx  is the ground acceleration. The damper is connecting two parallel 

structures at their floor level; hence the relative velocity of damper ends is given as 1 2rx x x    . The 

structural control criteria depend on the nature of dynamic loads and the response quantities of interest. In 

case of stiff structure, acceleration is of more concern generating higher inertia force in the structure, 

should be mitigated, whereas, in case of flexible structure displacement is predominant that needs to be 

controlled. Thus, minimizing relative displacement and/or absolute acceleration of the system has always 

been considered as the control objective. In view of this, the study aims to evaluate the performance of 

Maxwell damper for minimizing exclusively displacement as well as acceleration responses of coupled 

structure. 

 

Fig. 1 Structural model of two SDOF parallel structures connected with Maxwell damper and its 

corresponding mathematical model 

GROUND MOTION EXCITATION 

Earthquake ground motions are multidimensional and random in nature. Various kinds of stochastic 

ground motion models, stationary or non-stationary have been developed, which describe the 

uncertainties characterizing earthquake ground motion time histories. Housner [26], Thomson [27], 

Rosenblueth and Bustamante [28] and many others, earlier proposed stationary white noise earthquake 

models. The stationary filtered white noise models suggested by Kanai [29] and Tajimi [30] describe the 

dominant frequency and local site properties in the ground motion. It was used extensively in random 

vibration analysis of structures. The stationary models fail to reproduce amplitude non-stationary (time-

varying intensity) typical of real earthquake ground motion time histories. Therefore, different kinds of 

time-modulating functions were introduced to produce various non-stationary ground motion models. If 

the evolution of the frequency content with time can be neglected, the amplitude non-stationary of 

ground-motion is modeled by a stationary Gaussian random process with zero mean multiplied by a 

deterministic modulating function also called envelop function. The modulating function capture the non-

stationary trend observed in earthquake ground motion excitation. The various envelop function generally 

used are exponential type envelop function by Shinozuka and Sato [31], Iyenger and Iyenger [32],  Box-

car type modulating function by Tajimi [30], initially increasing parabolic, remain constant during strong 

motion duration, and decaying exponentially suggested by Amin and Ang [33] and many others. The 

earthquake excitation ( )gx t  is expressed as 
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 ( ) ( ) ( )g fx t A t x t   (9) 

where ( )A t  is a deterministic modulating function; and ( )fx t  is a stationary random process. The 

evolutionary power spectral density function (PSDF) of the earthquake excitation is given by 

 
2
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 (10) 

where ( )
fx

S 


 is stationary PSDF of the earthquake ground motion. In the present study, the PSDF of the 

earthquake excitation ( )fx t  is considered as (Clough and Penzien) [34] 
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where 0S  is constant PSDF of input white-noise random process; and s , s , 
f  and 

f  are ground 

filter parameters. The s  and s  generally represent the predominant frequency and damping ratio of 

soil strata, respectively. To model the various shape of the PSDF of earthquake excitation, the different 

values of the parameters 
f  and s  is to be considered. The random process ( )fx t  is considered as the 

response of two linear filters subjected to white-noise excitation as 

  2

0( ) 2 ( ) ( ) ( ) ( )f f f f f f sx t x t x t x t x t           (12) 

 
2

0( ) 2 ( ) ( ) ( )s s f s s sx t x t x t x t         (13) 

where 0 ( )x t  is input white-noise random process with the constant intensity of the PSDF 0S . The 

Equations (12) and (13) provide the stationary PSDF of the response ( )fx t  as that expressed by   

Equation (11). The non-stationary response of SDOF system for different shapes of modulating function 

having the same energy content has been presented by Jangid [35]. In the present study the non-stationary 

earthquake excitation ( )gx t  is the non-stationary random process ( )fx t  to be obtained considering the 

input white-noise random process 0 ( )x t , and modulating function ( )A t , proposed by Amin and Ang 

[33]. The modulating function initially increases parabolic (up to time 1t ), remain constant during strong 

motion (between 1t  and 2t ), and then decreases exponentially, expressed as 

 

Fig. 2  Typical non-stationary ground motion realization 
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where c  is constant. A typical non-stationary ground motion realization with parameters 1t  = 5 sec, 2t  = 

20 sec, strong motion duration 2t - 1t  = 15 sec, and 0.5c   s-1 is shown in Figure 2. 

NUMERICAL STUDY 

Two parallel SDOF structures with identical mass (i.e. mass ratio   = 1) connected at floor level by 

Maxwell damper is considered. The lateral stiffness of each structure is chosen in such a way that the 

fundamental circular frequency of Structure 1 is   rad/sec  and that of Structure 2 is 2  rad/sec. Thus, 

Structure 1 may be considered as a flexible structure and Structure 2 as a stiff structure. The frequency 

ratio   of the coupled structure becomes 2, (i.e. dynamically well-separated structures). The various 

parameters considered are the damping ratio of both the structure 1 2 0.05   , the damping ratio of 

Maxwell damper 0.21d   and relaxation time   = 0.01. Considering 1000 realization of the input 

process and using ensemble averages, the root mean square (RMS) responses are obtained using extensive 

Monte Carlo simulation which is based on the equations of motion (Equations 3, 7, 8, 9, 12 and 13) of the 

coupled structure. For the present study, the various parameter 2f   rad/s, 3s   rad/s, 

0.6,s   0.6f   and 0 0.05S   m2/s3 are used. The time variation of RMS relative displacement and 

RMS absolute acceleration of Structure 1 and 2 for non-stationary ground excitation (Clough and Penzien 

model) with damper and without damper is shown in Figure 3. It is observed that the stationary response 

is achieved in a short time and remains stationary during strong motion duration. The RMS response of 

parallel structures is decreased when they are connected with Maxwell damper. Similar behavior also 

observed in Figure 4, which shows the time variation of RMS relative displacement and RMS absolute 

acceleration of coupled structure subjected to stationary ground motion excitation. Considering the 

average value of RMS response during the strong motion duration phase as a response quantity, the 

percentage reduction in response quantities of the coupled structure is shown in Table 1. The variation of 

the RMS displacement response and RMS acceleration response against the damping ratio d  is shown in 

Figure 5. It is observed that RMS response reduces up to the certain value of d  after which they are 

increased. Thus there is some optimum value of d  for which RMS response quantity is a minimum 

value. The optimum d  value for displacement as well as the acceleration response of both the structure 

is different. But, at the optimum d  value of any one response quantity, the other responses also decrease. 

The optimum value of d  for one response quantity is close to the optimum value d  of the other 

response quantity and in the vicinage of it, the response of the structures does not vary significantly. From 

Table 1 it is observed that the percentage reduction in the response quantities under non-stationary 

earthquake ground motion is quite comparable with that of the stationary response. The response of the 

considered structure to such non-stationary excitation involves lengthy calculation and much time-

consuming. The other study also found that the response of structures to non-stationary excitations, both 

in the time domain (Gasparini [36], Langley [37], Muscolino [38] and many others) and frequency 

domain (Hammond [39], Corots and Vanmarcke [40] and many others) is complicated and involves 

lengthy calculations. Thus, to simplify the analysis, all subsequent numerical results are presented 

considering the Maxwell damper connected parallel structures subjected to white-noise earthquake 

excitation. 
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Fig. 3 Time variation of root mean square displacement and root mean square acceleration for 

non-stationary ground excitation 

 

 

Fig. 4 Time variation of root mean square displacement and mean square acceleration for 

stationary excitation 
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Fig. 5 Variation of root mean square responses against the damping coefficient of the damper 

for different value of structural damping in parallel structure (   2,   1 and   0.01) 

Table 1: Comparison of stationary and non-stationary responses of parallel structures connected 

by Maxwell damper ( = 1,  = 2, 1 2   0.05,  = 0.01, d  = 0.21 & 0S  = 0.05 m2/s3) 

Model of PSDF of 

earthquake 

excitation 

Response quantity Stationary response Non-stationary 

response 

Clough and Penzien 

model with 

/ 2f   rad/s 

and 3s   rad/s 

RMS displacement  1x  (mm) 0.1885 0.1886 

0.1135  (39.79)* 0.1129 (40.14) 

RMS displacement  2x  (mm) 0.072 0.0718 

0.0637 (11.53) 0.0634 (11.70) 

RMS acceleration   1ax  (g) 0.1916 0.1914 

0.1327   (30.74) 0.1324  (30.83) 

RMS acceleration   2ax  (g) 0.2588 0.2579 

0.2241  (13.41) 0.2234  (13.38) 

White-noise model RMS displacement  1x  (mm) 0.1781 0.1709 

0.1060  (40.48) 0.1060  (37.98) 

RMS displacement  2x  (mm) 0.0575  0.0575 

0.0531  (7.65) 0.05254 (8.70) 

RMS acceleration   1ax  (g) 0.1807 0.1766 

0.1133 (37.30) 0.1133  (35.84) 

RMS acceleration   2ax  (g) 0.2160 0.2138 

0.1853  (14.21) 0.1853  (13.33) 

*indicates percentage reduction in response for damper connected structure 
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RESPONSE TO STATIONARY WHITE-NOISE RANDOM EXCITATION 

The parallel structures connected with Maxwell damper subjected to stationary white-noise 

excitation, the mean square displacement response (
2

1x  and 
2

2x ) and acceleration response (
2

1a  and 

2

2a ) of Structure 1 and 2, respectively, are given by Nigam [41]. 
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where 1( )x   and 2 ( )x   are the harmonic transfer function of displacement response of Structure 1 

and 2, respectively; 1( )ax   and 2 ( )ax   are the harmonic transfer function for acceleration response of 

Structure 1 and 2, respectively. To obtain the harmonic transfer function for displacement and 

acceleration response, let us consider the connected structure as shown in Figure 1, is subjected to 

harmonic base acceleration given by 

 0

i t

gx a e   (16) 

where 0a  and   are the amplitude and excitation frequency, respectively, of the harmonic ground 

motion. This analysis is carried out in the frequency domain. Thus, from Equations 7, 8 and 16 the steady-

state displacement response of Structure 1 and 2, is obtained as 
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with 1 1 1c m  ; 2 2 2c m   and 1d dc m   

The absolute acceleration response ( 1ax  and 2ax ) can be calculated by differentiating Equations (17) 

twice and adding it to the ground acceleration [Equation (16)] as given below 
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The variation of the displacement response amplitude and acceleration response amplitude of two 

structures against the damping coefficient of the damper d , considering other parameters mass ratio     

  = 1, frequency ratio   = 2 and relaxation time   = 0.01 is shown in Figure 6 for different damping 

ratios in connected structures (i.e. 1 2   0, 0.02, 0.05). It is observed that there exists an optimum 

value of the damping coefficient of the damper for minimum responses. It is also observed that the 

optimum damper damping coefficient for connected damped structures lies almost very close to that of 

connected undamped structures and a slight variation in the optimum damping of damper does not have 

much effect on the optimum responses. The difference in resulting responses of the damped system 

considering (a) actual optimum damper damping and (b) optimum damper damping that corresponding to 

the undamped system is quite negligible. Thus, the optimum damping coefficient for an undamped 

structure can also be used for the connected damped structure satisfactorily. To study the effect of 

relaxation time on the response of connected structural, the variation of responses against the excitation 

frequency considering mass ratio  = 1, frequency ratio   = 2; structural damping 1 2   0.05 and 

damping coefficient of damper d  = 0.23 for different value of relaxation time (i.e.   = 0.001, 0.01, 0.1, 

1, 10) is shown in Figure 7. It is observed that the displacement, as well as acceleration response of 

Structure 1, is not affected by the relaxation time (  ) value less than 0.1, whereas, for Structure 2, the 

effect of the relaxation time (  ) value less than 0.01 not affecting the displacement and acceleration 

response. 

 

Fig. 6 Variation of response amplitude against the damping coefficient of the damper 
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Fig. 7 Variation of peak response against relaxation time for the different value of the damping 

coefficient of the damper (  2,   1) 

OPTIMUM DAMPER DAMPING FOR UNDAMPED CONNECTED STRUCTURES 

The mean square displacement for an undamped system ( 1 2 0    ) is obtained by solving 

Equations (15a) and (15b) for Structure 1 and 2, respectively, using the technique given in Cremer and 

Heckle [42] and are given by  
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The optimization criterion depends on the nature of dynamic load acting on the structure and response 

quantities of interest. Bhaskararao and Jangid [21] have considered the displacement and acceleration 

response of structures individually as response quantity for optimization. Zhu and Xu [19] have selected 

the relative vibration energy of the structure as the response quantity of interest for optimization. For the 

present study, the displacement and acceleration response of connected structure individually is 

considered for optimization. The optimizing condition 
2

1x dd d  = 0 gives the optimum damping 

coefficient for a mean square displacement of Structure 1, after simplification, as 
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Similarly for Structure 2, the optimum condition 
2

2x dd d   = 0 results 
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The corresponding mean square displacement of Structure 1 and 2 at the optimum damping of the damper 

obtained by using Equations (21) and (22) expressed as 
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To investigate the effect of frequency ratio of structures on the performance of Maxwell damper, the 

variation of 
opt

d  and corresponding mean square displacement responses against the frequency ratio for 

the different mass ratio of structures and relaxation time   = 0.01 is shown in Figure 7. From these 

figures, it is observed that the optimum damping coefficient increases with the increase of the frequency 

ratio. This is due to the reason that the higher frequency ratio increases the relative velocity between the 

connected floors and thus, requiring a higher damping coefficient. The Maxwell damper to be more 

effective for energy dissipation results in more reduction in displacement response. It is also observed that 

the increase in mass ratio reduces the 
opt

d  of Maxwell damper. Further, with an increase in frequency 

ratio the mean square displacement of the connected structures is decreased. Thus, the Maxwell damper 

becomes more efficient for displacement response control of dynamically dissimilar coupled structures. 

The increases in mass ratio increase the mean square displacement response of Structure 1, whereas, it 

decreases the mean square displacement response of Structure 2. 

In order to use the Equations (22) and (23), keep the Structure 1 as flexible among the two structure. 

When the Structure 2 is flexible in connected structures then the coupled system shall be rotated by 180 

degree so that left side structure the Structure 1 become flexible and right side structure the Structure 2 as 

the stiff structure and calculate the system parameter accordingly so that frequency ratio,   shall always 

be achieved more than 1. 

The mean square absolute acceleration for an undamped system ( 1 2 0    ) is obtained by solving 

Equations (15c) and (15d) for Structure 1 and 2, respectively, using the technique given in Cremer and 

Heckle [42] and are given by 
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The optimizing condition 
2

1a dd d   = 0 gives the optimum damping coefficient for the mean square 

absolute acceleration of Structure 1, after simplification, as  
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Similarly for Structure 2, the optimum condition 
2

2a dd d   = 0 results 
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The corresponding mean square acceleration of Structure 1 and 2 at the optimum damping of the damper 

obtained by using Equations (24) and (25) expressed as  
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The effect of the frequency ratio of the connected structure on 
opt

d  and corresponding mean square 

absolute acceleration response is shown in Figure 9 for the different mass ratio of structure and relaxation 

time   = 0.01. It is seen from these figures that the optimum damping coefficient 
opt

d  increases with the 

increase of the frequency ratio as observed in Figure 8. Further increase in the mass ratio reduces the 
opt

d  

of Maxwell damper for acceleration responses. The increase in frequency ratio decreases the mean square 

absolute acceleration responses corresponding to respective 
opt

d  of the two structures. Thus, it can be 

concluded that the higher reduction in the mean square acceleration responses can be achieved for 

dynamically dissimilar connected structures. The increase in mass ratio increases the mean square 

absolute acceleration response of Structure 1, whereas it decreases the mean square absolute acceleration 

response of Structure 2. 

 

Fig. 8 Variation of the optimum damping coefficient of damper and corresponding mean square 

displacement responses against frequency ratio for different value of the mass ratio          

(   0.01) 
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Fig. 9 Variation of the optimum damping coefficient of damper and corresponding mean square 

acceleration responses against frequency ratio for different value of the mass ratio 

( 0.01)   

 

Fig. 10 Effects of frequency ratio on the phase angle of the displacement response of the 

connected structure (  1, d  = 0.21 and   0.01) 

To demonstrate the Maxwell damper performance for higher frequency ratio, the phase angle of the 

harmonic transfer function for displacement response of the Structure 1 and 2 considering   1,          
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d  = 0.21 and   0.01 is plotted in Figure 10 for   = 1, 1.25, 1.5 and 2. The difference in the phase 

angle of the displacement of the two structures increases with an increase in the frequency ratio. This will 

result in larger relative displacement and velocity in Maxwell damper cause more energy dissipation and 

subsequent response reduction. 

 

Fig. 11 Variation of the optimum damping coefficient of damper and corresponding mean square 

displacement response against relaxation time 

 

 

Fig. 12 Variation of the optimum damping coefficient of damper and corresponding mean square 

acceleration response against relaxation time 
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The effect of relaxation time   on 
opt

d  and the corresponding mean square displacement responses 

for mass ratio   1 and frequency ration   = 2 are shown in Figure 11. It is seen from these figures that 

increase in relaxation time   up to the value of 0.1, the 
opt

d  remain constant, further increase in  , the 

opt

d  increase. Thus, an increase in   up to the value of 0.1 is not affecting the mean square displacement 

response of Structure 1. The increase in   more than 0.1, the mean square displacement response of 

Structure 1 is increased. Whereas, increase in the   up to the value of 0.01 is not affecting the optimum 

value of mean square displacement response of Structure 2, and further increase in the  , the mean 

square displacement response of Structure 2 is decreased and after optimum value, increase in the  , the 

mean square displacement response of Structure 2 is increased. Thus, the effect of relaxation time   is 

marginal to the displacement response of Structure 1, whereas, the displacement response of Structure 2 

(stiff structure) is sensitive to relaxation time  . A similar effect is also observed in Figure 12, which 

shows the variation of optimum damping damper and corresponding acceleration response of Structure 1 

and Structure 2, against relaxation time  . 

CONCLUSIONS 

The random response of two parallel SDOF structures connected with Maxwell damper subjected to 

non-stationary as well as white-noise base excitation is investigated. Close-form expressions for optimum 

damping coefficient of Maxwell damper and corresponding mean square responses are derived. The effect 

of various parameters like frequency ratio, mass ratio, and relaxation time on the optimum damping 

coefficient of Maxwell damper and the corresponding mean square responses are is investigated. From 

the trends of the results of the present study, the following conclusions are drawn: 

1. For a given parallel structure connected with Maxwell damper, there exists an optimum damping 

coefficient of the damper for which the displacement and absolute acceleration responses of 

connected structures attain the minimum value. 

2. The optimum damping coefficient of the damper 
opt

d  increases with the increase of the frequency 

ratio and decreases with the increase in the mass ratio. The corresponding response at optimum 

damper damping decreases with the increase in the frequency ratio. 

3. The difference between the phase angle of response increase with the increase in frequency ratio 

results Maxwell damper is more effective for response control of the dynamically dissimilar 

connected structure. 

4. Effect of relaxation time is very marginal on responses of flexible structure, whereas, the stiff 

structure is sensitive to the relaxation time of damper. 

5. The derived close-form expressions for the optimum damping coefficient of the damper and 

corresponding responses can be effectively used for the preliminary optimum design of a parallel 

structural system connected with Maxwell damper. 
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