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ABSTRACT 

 This paper presents the application of artificial neural networks (ANNs) for the estimation of peak 

ground acceleration (PGA) for the earthquakes of magnitudes more than 5.0 and hypocentral distances 

less than 50 km. Earthquake magnitude, hypocentral distance, and average values of four geophysical 

properties of the site, i.e., standard penetration test (SPT) blow count, primary wave velocity, shear wave 

velocity, and density of soil, have been used as six input variables to train the neural network. An attempt 

has also been made to train the neural network with magnitude, hypocentral distance and average shear 

wave velocity as three input variables. This study shows that ANN is a valuable tool for the prediction of 

peak ground acceleration at a site, given the magnitude and location of earthquake, and local soil 

conditions. It has also been observed that the prediction using the trained network with six inputs is better 

than that with three inputs. 

KEYWORDS: Artificial Neural Networks, Peak Ground Acceleration, Hypocentral Distance, Shear 

Wave Velocity 

INTRODUCTION 

 Historically, peak ground acceleration has been considered as a parameter representing the severity of 

shaking at a site. Traditionally, engineers have been interested in the acceleration, which can be related to 

force. Peak ground acceleration (PGA), also termed as zero-period acceleration (ZPA), is defined as the 

absolute maximum amplitude of recorded acceleration. In the past, more than 120 equations have been 

derived to predict PGA (Douglas, 2003). A majority of the published ground motion estimation relations 

involves assumption of a model (i.e., a mathematical function) that relates a given strong-motion 

parameter to one or more parameters comprising magnitude, distance, and local site conditions. 

Subsequently, by using a strong ground motion dataset, ground motion relations are developed from the 

statistical regression analyses. Regression analysis is used to determine the best estimates of various 

constants in the mathematical function. The emergence of artificial neural networks (ANNs) as efficient 

computing models has provided an alternative tool for the estimation of PGA by using the actual seismic 

data without any simplification and assumptions. This paper presents the application of multi-layer 

perceptron in estimating PGA, and is based on the M.Tech. thesis of the first author (Arjun, 2008). 

 In the following sections of the paper, the compilation and processing of strong ground motion data 

for the Japanese earthquake records from Kyoshin-Net database is reviewed and a brief conceptualization 

of neural networks is presented. In addition, the application of ANN for the estimation of PGA along with 

the simulation results is presented. 

COMPILATION OF STRONG GROUND MOTION DATA 

 The database used in the study is taken from Kyoshin Net (K-NET) database. Kyoshin Net is a dense 

strong-motion network consisting of over 1,000 observatories deployed all over Japan at the interval of 

approximately 25 km. The instruments in these observatories are located on the ground surface. Each 

station has a digital strong-motion seismograph (i.e., accelerograph) with a wide frequency-band and wide 

dynamic range. In this study, a total of 84,456 horizontal components of earthquake records from 609 

earthquakes of Japan with the magnitude of 5 and above have been downloaded from the internet 
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(Kyoshin Network
1
). The magnitude scale used by Kyoshin Net is the JMA magnitude JMAM  estimated 

by the Japan Meteorological Agency (JMA). Almost all the sites have the data on soil conditions, e.g., 

standard penetration value, density, while including the P- and S-wave velocities recorded, except for a 

few stations where this soil data is not available. 

 All stations operated by K-NET have K-NET95 accelerometers, with 108 dB dynamic range having a 

maximum measurable acceleration of 20 m/s
2
 (i.e., 2000 Gals). The resolution of A/D converter is 18 bits 

with a sampling frequency of 100 Hz. The resolution of accelerometer is 1.5 m/s
2
. For processing the 

strong-motion data, a computer program developed by the second author has been used. In this program, 

the raw data available in terms of counts in the data format of K-NET has been converted into 

acceleration values by using the scale factor given in the header of data. As the natural frequencies of all 

accelerographs were very high (i.e., about 200 Hz), there was no need of the instrument response 

correction. 

 A baseline correction of all acceleration time histories has been performed by using the least square 

line of the time history. Corrections have also been applied in frequency domain by filtering the high- and 

low-frequency components of the accelerograms. All accelerograms were bandpass filtered by removing 

the frequencies below 0.1 Hz and above 30 Hz. A sixth-order Butterworth bandpass filter was used for 

this filtering operation. 

 All the 84,456 horizontal components of the earthquake records were manually viewed by plotting the 

acceleration time histories, and it was observed that in some of the time histories, two or more events had 

taken place. All such records with multiple events have been considered only up to the end of the first 

event by changing the duration of the motion in the header of the data format. 

 The average values of shear wave velocity, primary wave velocity, standard penetration test (SPT) 

blow count, and the density of soil have been used. The averaging of these parameters has been done as 

per FEMA-356 (FEMA, 2000). These values were calculated as shown below: 
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where si  denotes the shear wave velocity of soil, pi  the primary wave velocity of soil, iN  the SPT 

blow count, and i  the density of soil, in the layer i; id  denotes the depth of the layer i; and n  denotes 

the number of layers of the similar soil materials for which data is available. 

ARTIFICIAL NEURAL NETWORKS 

 Artificial neural networks are among the most powerful learning models that are capable of 

establishing a mapping relationship between the given sets of inputs and outputs. The theoretical 

background on neural networks (NN) can be found in a large volume of literature (e.g., Zurada, 1992; 

Hagan et al., 1996; Bishop, 1995; Mehrotra et al., 1996; Haykin, 1994; Demuth et al., 2006). Here, only a 

brief conceptualization of neural networks is given. 

 There is no universally accepted definition of an artificial neural network. It is a massively parallel-

distributed information processing system that has certain performance characteristics resembling the 

biological neural networks of the human brain (Haykin, 1994). 

 Neural networks have been inspired by the neuronal architecture of the brain. A neuron is the 

information-processing unit of the neural network, much like the brain in human beings (Haykin, 1994). 

Figure 1 shows the block diagram of a neuron. 

 A neuron consists of three main parts: a set of synapses, which connect the input signal jx  to the 

neuron via a set of weights, ;kjw  an adder ku  which sums up the input signals, weighted by the respective 
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synapses of the neuron; and an activation function  (.) for limiting the amplitude of the output of the 

neuron. At times, a bias kb  is added to the neuron to increase or decrease the net output of the neuron. 

 

Fig. 1 The block diagram of a neuron (Haykin, 1994) 

 Mathematically, a neuron k  is described as (Haykin, 1994) 
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where 1 2 3, , , , nx x x xK  are the input signals; 1 2, , ,k k knw w wK  are the weights for the neuron ;k  kb  is 

the bias; ku  is the adder or the linear combiner;  (.) is the activation function; and ky  is the output 

signal of the neuron. 

 The output range of the neuron depends on the type of activation function used. There are four types 

of activation functions, which are in common use (Demuth et al., 2006), namely, the hard-limit activation 

function, the log-sigmoid activation function, the tan-sigmoid activation function, and the linear 

activation function. 

1. Multilayer Perceptron 

 Network architecture refers to the manner in which the neurons are structured and connected to each 

other. There are a wide variety of networks depending on the nature of the information processing carried 

out at the individual neurons, the topology of the links, and the algorithm for the adaptation of link 

weights.  Network architectures can generally be classified as (1) single-layer feedforward, (2) multi-layer 

feedforward, (3) recurrent, and (4) lattice structure (Haykin, 1994). Furthermore, the networks can be 

fully or partially connected, meaning that neurons in a given layer might not be connected to all the 

neurons in the preceding or the following layers. 

 In this study, multi-layer feedforward neural networks, commonly referred to as multilayer 

perceptrons (MLPs), have been used. Multilayer perceptrons have been applied successfully to solve 

some of the difficult and diverse problems in several domains including the structural engineering 

applications. It has a layered architecture consisting of input, hidden, and output layers. The input signal 

propagates through the network in a forward direction on a layer-by-layer basis. The output of each layer 

is transmitted to the input of neurons in the next layer through weighted links. The hidden layer aids in 

performing useful complex computations by extracting progressively more meaningful features from the 

input layer. Figure 2 shows a one-hidden-layer MLP with D inputs, K hidden processing elements and M 

outputs (i.e., MLP (D-K-M)). 

 Training and weight adaptation is done in MLPs in a supervised manner with a highly popular 

algorithm known as the error back-propagation algorithm. Back-propagation is a very powerful and 

computationally efficient algorithm. Back-propagation learning consists of two phases. During the first 

phase, inputs presented to the input layer propagate through the network, layer by layer, to the output 
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layer, where the error between the desired output and the network output is calculated. During this phase, 

the weights are not modified, and they remain constant. During the second phase, the error signal is 

propagated backwards from the output layer through the network to the input layer. During this stage, the 

weights are adjusted in such a way that the actual output moves closer to the desired output. The 

following equation is used for the adjustment of connection weights: 

 ( ) ( / ) ( 1)ij ij ijw n E w w n j = ¶ ¶ + -   (4) 

where ( )ijw n  and ( 1)ijw n -  are the weight increments between the nodes i  and j  during the n th 

and ( 1)n- th epoch;   is the learning rate; and   is the momentum. 

 

Fig. 2 Multilayer perceptron, MLP (D-K-M), with one hidden layer 

 The momentum factor can speed up training in the very flat regions of the error surface and help 

prevent oscillations in the weights. A learning rate is used to increase the chance of avoiding the training 

process being trapped in the local minima instead of global minima. The derivation of the back-

propagation algorithm can be found in the literature (Haykin, 1994). 

2. Implementation of Back-Propagation Algorithm 

 Networks have been trained in this study by using the gradient descent with momentum learning 

scheme, which focuses on using the error between the network output and the desired output. The 

learning algorithm adapts the weights of the system based on the error until the system produces the 

desired output. The software NeuroSolutions, version 5.0 (NeuroDimension, Inc.
2
) was used for the 

simulation of neural network models. The „Error Criteria‟ family in NeuroSolutions computes different 

error measures that can be used to train the network. In this study, the criterion used is the 2L -norm or 

mean squared error (MSE) criterion. It simply computes the difference between the system output and the 

desired signal and squares it. 

 The stopping criteria should be such that it addresses the problem of generalization. This has been 

done by stopping the training at the point of maximum generalization. The training set is usually divided 

into two sets: the training and the cross-validation sets. The training is stopped when the error in the 

cross-validation set is smallest. This will be the point of maximum generalization. 

APPLICATION OF ANN FOR ESTIMATING PGA 

 In this study, the earthquake records from Kyoshin Net database have been used for training the 

neural networks. A total of 1,850 horizontal components of earthquake records from the 145 earthquakes 

of magnitudes more than 5.0, and with hypocentral distances of less than 50 km, have been used for 

training the networks.  Figure 3 gives the scatter plot of magnitude versus hypocentral distance of the data 

used. 

 An average of the two horizontal components has been used for the computation of peak ground 

acceleration. The so-obtained set of 925 values from the 145 earthquakes has been used for training and 

testing the neural networks. 

                                                 
2
 Website of NeuroDimension, Inc., http://www.nd.com 
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Fig. 3 Scatter plot of magnitude versus hypocentral distance 

 The prediction of PGA using ANN has been taken up in two stages. In the first stage, earthquake 

magnitude M , hypocentral distance H , average SPT blow count N , average primary wave velocity 

p , average shear wave velocity s , and average density   of soil have been used as the input variables, 

and peak ground acceleration has been considered as the output variable. In the second stage, the neural 

network with three nodes on the input layer representing earthquake magnitude M , hypocentral distance 

H , and the average shear wave velocity s  has been created, and PGA has been considered as the 

output. The database has the values of H  ranging from 0 to 50 km, N  ranging from 1 to 99, p  ranging 

from 450 to 3590 m/s, s  ranging from 85 to 1676 m/s and   ranging from 1125 to 2425 kg/m
3
. 

 The total set of 925 values has been divided into three sets: 

1. training set, 

2. validation set, and 

3. testing set. 

 The training set, which is about 80% of the complete dataset, has been used to train the network; the 

validation set, which is about 10%, has been used for the purpose of monitoring the training process, and 

to guard against overtraining; and the testing set, which is about 10%, has been used to judge the 

performance of the trained network. The training was stopped when the cross-validation error began to 

increase, i.e., when the cross-validation error was minimum. 

1. Six Inputs-Based Network 

 The ANN model with six nodes on the input layer has been created. The six nodes represent the 

earthquake magnitude M , hypocentral distance H , average SPT blow count N , average primary wave 

velocity p , average shear wave velocity s , and average density   of soil. A set of 825 values was 

selected randomly from the total set of 925 values for training and cross-validation, and the remaining set 

of 100 values was used to test the performance of the trained networks. Four different datasets of 825 

values were created and randomized. The four datasets were trained independently, and the dataset, which 

gave the minimum mean square error (MSE), was considered for testing the network. Parametric studies 

have been carried out in order to evaluate the optimum values of the hidden nodes and learning 

parameters. Various parameters used for training the network are given in Table 1. Figure 4 shows one 

hidden layer network model, with 15 hidden neurons, six input neurons and one output neuron. 

 Typical trained patterns have been presented in Table 2 for the six inputs-based network. In this table, 

MSET represents the mean square error of the training set, and MSECV represents the mean square error 

of the validation set. The network with 15 hidden neurons in the hidden layer (i.e., 6-15-1) showed the 

best performance with minimum MSE. 
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Table 1: Parameters for Neural Network with One Hidden Layer for Six Inputs 

Description Hidden Layer  Output Layer 

Transfer Function TanhAxon SigmoidAxon 

Learning Rule Momentum Momentum 

Step Size 1.0 0.1 

Momentum 0.9 0.9 

 

 

Fig. 4 Neural network architecture with six inputs for the prediction of PGA 

Table 2: MSE of Six Inputs-Based Network 

Dataset Network Epochs MSET MSECV 
Time Taken 

(h:min:s) 

Dataset 3 

6-10-1 10000 1.3610
-3

 1.4310
-3

 0:02:00 

6-7-1 10000 1.4210
-3

 1.5010
-3

 0:01:57 

6-14-1 10000 1.3510
-3

 1.4510
-3

 0:02:25 

6-15-1 10000 1.3110
-3

 1.4010
-3

 0:02:28 

6-16-1 10000 1.3610
-3

 1.4410
-3

 0:02:32 

6-18-1 10000 1.3410
-3

 1.4910
-3

 0:02:39 

6-19-1 10000 1.3510
-3

 1.4510
-3

 0:02:41 

6-10-1 20000 1.1710
-3

 1.3210
-3

 0:04:03 

6-18-1 20000 1.1610
-3

 1.2810
-3

 0:05:41 

6-15-1 20000 1.1410
-3

 1.2810
-3

 0:05:16 

6-15-1 30000 1.1110
-3

 1.1910
-3

 0:08:11 

6-15-1 50000 9.3310
-4

 1.1210
-3

 0:13:50 

2. Observations of Six Inputs-Based Network 

 The results obtained after testing the six inputs-based network were quite promising. These results 

have been compared by calculating the percentage error between the actual and predicted values of peak 

ground acceleration. The efficiency of results obtained from the tested network has been categorized as 

follows: 

1. the results with percentage error less than 3% as accurate, 

2. the results with percentage error in the range of 3–5% as substantially accurate, 

3. the results with percentage error in the range of 5–10% as moderately accurate, and 

4. the results with percentage error more than 10% as incorrect. 
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 The efficiency of results, which have been categorized as above, is tabulated in Table 3. The 

comparison between the desired PGA and the ANN output with six inputs is shown in Figure 5. 

Table 3: Efficiency of the Six Inputs-Based Network 

Serial No. Efficiency Percentage 

1 Accurate 65 

2 Substantially Accurate 10 

3 Moderately Accurate 5 

4 Incorrect 20 

 

 
Fig. 5 Scatter plot of predicted PGA versus desired PGA (with six inputs) 

 From the results, it is seen that the ANN with six inputs has predicted 65% accurate results on PGA 

along with some inaccurate results. It is also observed that the incorrect results are for the PGAs less than 

0.1 m/s
2
 (i.e., 10 Gals). It can therefore be concluded that ANN cannot predict lower peak ground 

accelerations correctly with the above trained network. This could be either due to the reason of 

overgeneralization during the training or because the training space contained very little data pertaining to 

the PGA less than 0.1 m/s
2
 (i.e., 10 Gals). 

3. Three Inputs-Based Network 

 Except the K-Net strong motion database of Japan, no other database provides the detailed soil 

condition data at the recording stations. Only few databases provide the average shear wave velocity s  

recorded at the stations. Therefore, for the use of trained networks based on the Japanese strong motion 

data in other countries, it is essential to train the networks for three inputs. 

 An ANN model with three nodes on the input layer has been created. The three nodes represent the 

earthquake magnitude M , hypocentral distance H , and average shear wave velocity s . Similar to the 

six inputs-based network, a set of 825 values was selected randomly from the total set of 925 values for 

the purpose of training and cross-validation, and the remaining 100 values were used to test the 

performance of the trained networks. Four different datasets of 825 were created and randomized. The 

four data sets were trained independently, and the dataset, which gave the minimum mean square error 

(MSE), was considered for testing the network. The parameters used for training the network are given in 

Table 4. Figure 6 shows a hidden layer network model, with 18 hidden neurons, three input neurons and 

one output neuron. 

 Typical trained patterns have been presented in Table 5 for the three inputs-based network. In this 

table, MSET represents the mean square error of the training set, and MSECV represents the mean square 
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error of the validation set. The network with 18 hidden neurons in the hidden layer (i.e., 3-18-1) showed 

the best performance with minimum MSE. 

Table 4: Parameters for Neural Network with One Hidden Layer for Three Inputs  

Description Hidden Layer  Output Layer 

Transfer Function TanhAxon SigmoidAxon 

Learning Rule Momentum Momentum 

Step Size 1.0 0.1 

Momentum 0.9 0.9 

 

Fig. 6 Neural network architecture with three inputs for the prediction of PGA 

Table 5: MSE of Three Inputs-Based Network 

Dataset Network Epochs MSET MSECV 
Time Taken 

(h:min:s) 

Dataset 4 

3-4-1 10000 1.5610
-3

 1.9310
-3

 0:01:39 

3-10-1 10000 1.5510
-3

 1.8510
-3

 0:01:57 

3-15-1 10000 1.4910
-3

 1.7110
-3

 0:02:18 

3-15-1 20000 1.4810
-3

 1.6710
-3

 0:05:07 

3-18-1 10000 1.4310
-3

 1.6210
-3

 0:02:22 

3-18-1 20000 1.4110
-3

 1.5910
-3

 0:05:49 

3-18-1 30000 1.3910
-3

 1.5310
-3

 0:07:41 

3-18-1 40000 1.3810
-3

 1.5210
-3

 0:10:39 

3-18-1 50000 1.3710
-3

 1.5110
-3

 0:13:10 

The efficiency of results obtained from the tested network has been categorized in a similar manner as 

that of the results from the six inputs-based network. The efficiency of results has been presented in  

Table 6. Figure 7 shows the scattered plot of desired PGA versus predicted PGA. 

4. Observations of Three Inputs-Based Network 

 From the results presented, it is observed that the percentage of accurate results with three inputs is 

less when compared with that with six inputs. Further, it is observed that the trained networks are not 

capable of mapping peak ground accelerations less than about 0.2 m/s
2
. 

5. Testing of Trained Network for Few Significant U.S. Earthquakes 

 Only few organizations provide information on the average shear wave velocity s  recorded at the 

stations. One such organization that provides the average shear wave velocity s  recorded at the stations 

is the California Strong Motion Instrumentation Program (CSMIP). In this study, the processed data from 

the CSMIP database has been taken. The data consists of the ground motion recorded at a particular 

station for a particular event. In addition, for each recording station the average shear wave velocity s , 
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as recorded, is also available. The earthquake magnitude M , the hypocentral distance H , and the 

average shear wave velocity s  are considered as the inputs, and the PGA is considered as the output. An 

average of the two horizontal components has been used for the computing the PGA. It has been found by 

Katsumata (1996) that the average difference between JMAM  and moment magnitude wM  is not 

significant for the earthquakes in the magnitude range from 5 to 7. The networks trained with three inputs 

for the K-Net records were tested for a few significant CSMIP records. The testing has been done for the 

following records: 

1. Loma Prieta Earthquake record ( wM = 7.0; October 17, 1989; Eureka Canyon Road, Corralitos 

station), 

2. Big Bear Earthquake record ( wM  = 6.4; June 28, 1992; Civic Center Grounds, Big Bear Lake 

station), 

3. Northridge Earthquake record ( wM  = 6.7; January 17, 1994; Cedar Hill Nursery A, Tarzana station), 

and 

4. Parkfield Earthquake record ( wM = 6.0; September 28, 2004; Gold Hill 3W, Parkfield station). 

The PGAs predicted by the neural network (trained for three inputs) for these ground motions are 

tabulated in Table 7. 

 

Fig. 7 Scatter plot of predicted PGA versus desired PGA (with three inputs) 

Table 6: Efficiency of the Three Inputs-Based Network 

Serial No. Efficiency Percentage 

1 Accurate 44 

2 Substantially Accurate 20 

3 Moderately Accurate 12 

4 Incorrect 24 

CONCLUSIONS 

 A multi-layer perceptron architecture with the error back-propagation learning algorithm has been 

adopted to estimate peak ground accelerations for the Japanese earthquake records with earthquake 

magnitudes more than 5.0 and hypocentral distances less than 50 km. The PGAs predicted by the ANN 

with six inputs have been found to be more accurate in comparison with the three-inputs case. From these 

observations it has been concluded that the perceptron model is quite promising for the estimation of peak 

ground acceleration and that the obtained results might be of significant importance for future project 

sites coming up near the active faults with expected hypocentral distances less than 50 km. The PGAs 
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predicted with six inputs showed accurate results (with percentage errors less than 3%) for 65% cases, 

whereas, in the case of three inputs, 44% of the predicted PGAs showed accurate results. It has been also 

seen that a majority of the incorrect results (with percentage errors more than 10%) are for the lower peak 

ground accelerations. A careful selection of the data may enhance the predictions, especially in the case of 

PGAs more than 0.1 m/s
2
 (i.e., 10 Gals). The PGAs predicted by the three inputs-based network for a few 

significant U.S. earthquakes were found to be quite close to the desired values and generally on the higher 

side. 

Table 7: PGAs Predicted by the Three Inputs-Based Network 

Earthquake M  
H   

(km) 
s

  

(m/s) 

Desired 

PGA 

(m/s
2
) 

Network 

PGA 

(m/s
2
) 

Percentage  

Error 

Loma Prieta 7.0 20.13 462 5.435 5.947 9.42 

Big Bear 6.5 12.9 339 5.032 5.284 5.00 

Northridge 6.4 18.7 257 13.576 11.786 13.18 

Parkfield 6.0 9.5 438 5.372 5.685 5.82 

Percentage Error = 100|(Network PGADesired PGA)||Desired PGA| 

 Results of the predicted PGA have indicated that ANN is a promising tool for the estimation of peak 

ground acceleration at a site. The performance of networks may be improved by carrying a detailed 

parametric study on the optimal network to be used for predicting the peak ground acceleration. Future 

work may also examine the application of hybrid artificial intelligence techniques. 
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