ON THE VIBRATION BEAM AND SLAB BRIDGES

K. T. Sundara Raja Iyengar* and K, S, Jagadish**

SYNOPSIS v

The beam and slab bridge isa complex structure
and the calculation of its natural frequency is quite invol-
‘ved. A simplified procedure has been giveh in this
paper for such a calculation., A Fourier series
expansion in terms of plate-eigenfunctions has been used
to express the deflection of the bridge, the bridge being
considered as a' plate resting on beams. It has been
found that a one-term approximation gives satisfactory
results and numerical work has been carried out for
various bridge aspect-ratios based on a one-term approx-
mation. Graphs have been given to facilitate a rapid
estimate of the frequency.

INTRODUCTION .

The natural frequencies of a structure: especially
of the graver modes, form important basic dat1 necessary
in evaluating  its response under a variety of dynamic
loads. These frequencies are of interest whether one
wishes to determine the dynamic deflection of a bridge
wnder the action of a moving load orits behaviour
under blast loadings and strong-motion-earthquakes.
An easy procedure to calculate the fundamental natural
frequency, without sacrificing the accuracy of the result,
would then be eminently desirable.

The dynamic behaviour of bridges has been studied
extensively by various authors such as Inglis (1934) and
others, but, they have confined themselves mostly to
the study of Railway bridges. The natural frequencies
of such bridges can be obtained. easily by the theory of
beam-vibrations. The situation is more complex when
one considers a beam and slab bridge. The problem is
essentially two dimensional and a one-dimensional appro-

ximation is not reliable unless the spanis very large
when compared with the width of the bridge. A ratio-
nal analysis of the problem then requires, a consideration
of the bridge in the light of the plate theory.

Stiffened Plate structures have been studied in the
literature, most often by the orthotropic plate theory.
Considering the beam and slab bridge as an orthotropic
plate one arrives at a transcendental equation for the
bridge frequency (Hoppmann and Huffington, 1958).
This approach has been utilised by Naruoka and
Yonezawa (1958) for the frequency analysis of the beam
bridge. But the solution of the transcendental equation
for various bridge dinamensions is quite cumbersome
and is not easily amenable for engineering purposes.

In this paper the bridge has been considered as a
plate resting on beams. It has been assumed that there
is no restraint against slippage between the beam and the

‘slab and that the beam offers only vertical forces of

reaction against the plate. Torsional resistance of the
beams and the internal damping in the bridge have been
neglected. The consideration of restraint against slip-
page leads to very involved equations and is not amena-
ble to a rapid calculation. The influence of restraint
against slippage tends to increase the potential energy
of deformation of the structure and its effect may also
be considered by increasing the stiffness of the beam on
the basis of the effective width concept. The question
of effective width in dynamic problems has not been -
well understood and this consideration merits more
detailed theoretical and experimental investigations.

THE PLATE-EIGEN FUNCTIONS
It is well known that the normal modes of a vibra-
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ting plate can be described in terms of known functions
when its two opposite edges are simply supported. A
slab bridge can be considered as a plate simply supp-
orted on two opposite edges and free at the other two

(Fig. 1).-
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‘Considering the classical plate equation
P W

V‘W-}--—- —5 =0 e (D

ot
where W is the deflection of the plate, P the ‘mass of
the plate per unit arca, D the flexural rigidity of the
plate, one can take for the m-n't mode of vibration

Wmn=Ymn (y) SlnT Cos Pun t e (2)

where ‘a’ is the span of the slab bridge, Pmn the circular
frequency of vibration for the m-n'" mode, m and n
being any two integers. Ymn will now take the form

Ymn () = Ay Cosh mny + Aq Sinh Smnd

As Cos Bm"y+A4 SmBm"y . 3)

where b is the width of the slab bridge,
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The free edge boundary conditions at y =+ —22—

may be expressed as

d? Ymn m27r2
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where v is the Poisson’s ratio.
Considering only modes symmetric iny we. obtain

the frequency equation to satisfy these boundary condi-
tions for the slab bridge as ’

. 2
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tan &’m = — Jmn 2
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This equation has to be solved together with (4c) to ob-
tain the frequency pai'ameters omn and PBmn. These
equations will have an infinite number of roots for each
value of m. The eigenfunction corresponding to the nth
root may now be taken as

2

amn, . b
Cosh -~ Bl omn— vm?7? F

Yma (y)= —t T X
Cosh —m,zll B%mn+vm27? o
Cos Brumy
b . 7
Bon w0
Cos 5

The first roots of the equations corresponding to the
fundamental mode of vibration have been obtained by
an iteration procedure given in Appendix I. The values
of the roots are given in Table 1 for v=0 and v:==0.2,

It can be shown that integrals of the type
e 8

It may thus be seen that

b/2
j ) r Youn Yy Sin ™2 Sin 1’2‘ dx dy =0

-b/g JO
whenever i = morj # n

the functiohs Ymn Sin’%?5 form an orthogonal set in
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This property of the plate-eigenfunctions allows a Four-
ier series expeusion of an arbitrary function in terms of
these functions. A knowledge of the value of the integral

‘ 1 [+bfe

8 . o M7X
—_— 2 3 0 = vee
ab -.b/g Io Y mn Sin a dx dy Kmn (9)

is essential for such a Fourier series expansion. The
values of this integral have been given in Table 2 for
mz= landn =1

ANALYSIS
A typical beam and slab bridge with k beams

disposed symmetrically about the x-axis, the free edges
being parallel to the x-axis (Fig. 2) may now be consi-
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Fig. 2.
dered. The analysis of free vibration of this structure
will now be based on the following assumptions.

- (i) There is no restraint against slippage between
the beams and the slab,

(i) The torsion of the beams may be neglected and
(iii) The internal damping in the "brjdge ‘may be
neglected. ‘ ‘
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Though the first assumption is rarely realised in
practice, the inaccuracies)arising from this assumption
may be compensated for by suitably increasing the stiff-
ness of the beam based on the effective width concept.
Such an enginecring approach to simplification. is nece-
ssary since the equations would otherwise become very
complicated. The second assumption is besed on the
fact that the rotations of plate cross-sections will be
small in the first mode of vibration.

The motion of the slab may be described by the
equation
k
DVW—pPpW=—3 lS(cr) fr (x) - (10)
I= .
after separating the time variable, where y=c; denotes
the location of the rtt beam, fi(x) is the amplitude of
the vertical force of interaction between the rtt beam
and the slab and § (¢r) is the Dirac-delta function
aty = cr. The deflections of the beams are given by
the equations
d*Wr

El dx*

—Y p? Wr = fi (x) . (11)
r=1,2, ...k :
where EI is the stiffness of any beam, ¥ is the mass per
unit length of any beam and Wr(x) =w(x,cy).
W is now expanded in terms of the plate eigenfunctions
discussed previously and one can write
' w ® L :
W= 2 2 Amn Ymn Sln e (12)
m=1 n=|
It may be noted that the functions used in the above
expansion satisfy all the boundary conditions exactly.
The coefficients Amn now remain to be chosen so as to
satisfy the equations (10) and (11). Expanding

k
3, 8(cr) fr(x) by another Fourier series,

T=

max
a

amn Yo sm"-”-aﬂ( 13)
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Using (13) and (12) in (10),

. . .
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where pmu is the circular frequency for the m—n't mode
of vibration of the slab without beams.

Collecting the coefficient of each Yun Sinxp—i—:—x in (15)

and using (14)
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. ‘Here one has an infinite'set of homogéneous equa-
tions in Ap; for each value of m. -

, _Pptamb* . _Ppb* o _EI
Putting Amn -— D y A= D ,K1=‘Db and

K; = %-5" the equation may be written as

Amn (Amn—2) i
1 ke o
™ S, Amj Ymj () Ymalcr) X
me=li=t » 4,448
b
n=1, 2, ves . (20)

For non . trivial solutions of Anpj the determinant of
the coefficients of Amj should vanish. The roots of this
determinant give the values of A, the frequency parame-
ter, for various modes.- :
CONVERGENCE OF SOLUTION

For purposes of numerical analysis it is necessary
to consider a' finite number of terms in the series, the
number of terms depending upon the rapidity of the
convergence of the solution. A typical case has been

examined by taking% = 2.0 and considering a three-
beam bridge such that ¢, = %—? , € =0, and cz= __3_;.) .

Putting m = 1, one obtains modes with no nodal lines
in the x direction. Taking three terms in the series
corresponding to Au, Ay, and Az a third order determi-
pant is obtained: The determinant is given below
putting K; = 2.0 and Ky = 0.2

749.0910 —1.58871A —29.6167+0,48647\

—34.6162 +0.56859\ 15488.7—1.50991A

~—8.2618+0.1357
—4.3230+-0.07100

— 5.1452 +0.08451n

—8.11354-0.133260 | = 0

91053.3—2.04541A

The values of /A for the first mode corresponding
10 a one-term approximation, two-term approximation
and three-term approximation have been determined
and they are, '
No. of terms 1 2 3
CWN 21.714 21.669 - 21.669
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It may be noticed thaf the convergence is very rapid
and that a one-term appioximation is sufficiently accu-
rate for engineering purposes. The rapidity of conver-
gence stems from the fact that the diagonal terms are
very large when compared when the others,
and they increase very .rapidly as the order of
the diagonal term is increased. The same situation
prevails in other determinants corresponding to various
aspect-ratios of the bridge. The results of one-term
approximation may therefore be used for a practical
calculation of the bridge frequency-.

ONE-TERM APPROXIMATION

Theé' frequency analysis now becomes very much
simplified since no determinaintal equation need be
solved. As the frequency of the first symmetric. mode
is the most important data, numerical work has been
carried out only for this mode. Putting m=1 and tak-
itig the first térm in the seriés corfesponding to Ay, the
frequency equation becomes

o sapa ko
2Ku M+K ”ﬂ;ff EI Y (cr) ‘
. r—
=RKu+Ks % Yy (eln - (2D)
==

The calculation of )\ is now quite straighit forwafd
once the values of Ky, s, 24 and By for each %— ratio
are known. The values of ay, Bn, and K, are to be
found in Tables 1 and 2. The values of Ay are given
in Table 3. ‘

The frequency paramctérs for various bridge dime-
nsions have been presented in the graphs (Figs. 3 to 14)*
both for v=0and v=0.2 to facilitate rapid frequency
determination. The variation of 4/A with respect to K,
is very nearly-a straight line in the range of values of
K, chosen and the graphs have been drawn as such.
The graphs cannot be extended much beyond the value
of K; = 10, since then the variation will not be linear,
and also the accuracy of the one-term approximation
is affected for large values of K;. Nonetheless, the
approximation gives satisfactory results in the range of
bridge dimensions met with in practice.
CONCLUSIONS

The procedure outlined in the previous sections
provides a rapid way of calculating the bridge frequency

unlike the one using the orthotropic plate theory. The
orthotropic plate theory necessitates the solution of a
cumbersome transcendental equation for every frequency
calculation. The present procedure owes its simplicity
to the fact thatthe bridge deflection is expanded in
terms of the plate-eigenfunctions and also to the ortho-
gonal properties of these functions.

It may be noticed from the graphs that in general,

except for %: 1.5, the bridge frequency is less than
the frequency of the corresponding beamless slab, in the
range of values of K,_ and K, considered. This indicates
that the influence of the mass of the beams dominates
over the influence of the stiffness of the beams in the

above range.

The graphs also clearly demonstrate the influence
of Poisson’s ratio on the bridge frequency, which arises
due to the presence of free edges. A decrease in Pois-
son’s ratio is attended by an increase in the frequency.
This is in conformity with the well known theorem due
to Rayleigh that the introduction of constraints raises
the frequency of a system. One may also notice that as
the span/width ratio increases the Poisson’s ratio effect
is less pronounced. For span/width ratios beyond 3.0
the neglect of Poisson’s ratio introduces only negligible
errors. This mey be considered as being due to the pre-
dominently -one-dimensional action of the bridge at large
span/width ratios.

It is necessary to remark here that the assumption
of absence of restraint against slippage leads to fre-
quencies lower than the actual, since this absence of res-
traint is not realized in practice. This again follows
from the well known theorem due to Rayleight (1945).
The consideration of this restraint in the problem would
render the equations sufficiently complicated as to make
the numerical labour prohibitive: As mentioned earlier
in the introduction this difficulty may be circumvented
by suitably. calculating the stiffness of the beam by
taking a portion of the plate to act with the beam.
This altered stiffness may then be used in the procedure
developed in this paper to calculate’ the frequency. A
similar problem has been encountered in the treatment
of bu’ékling‘of plate-beam systems (Timoshenko and

*Figures given at the end of this paper,
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Gere. 1961). It is needless to emphasize that the width
of the plate to be included in the stiffness calculation
can 6nly be determined by detailed theoretical and expe-
‘rimental investigations.

Table 1

FREQUENCY PARAMETERS FOR THE SLAB

a v.—:O ‘U:O.Z

? Q1 Bi1 Gy .311

1.5 5.9283 5.1353 - 5.8439 5.0376

20 - 5.4609 4.9886 5.4013 4.9233

2.5 5.2188 4.9069 5.1757 4.8610
- 3.0 5.0784 4.8576 5.0463 4.8241

3.5 4.9902 4,8261 4.9655 4.8005

4,0 4.9315 4.8049 4.9120 4.7848

Table 2
VALUES OF K,

% v=0) v=0.2

1.5 0.71599 0:67541

2.0 0.62231 0.60131

2.5 0.57881 0.56587

3.0 0.55501 0.54619

3.5 0.54056 0.53415

4.0 0.53113 0.52626

Table 3
VALVES OF 1,

-t‘)l v=0 v=0.2

1.5 946.056 885.912

2.0 748.229 713,235

2.5 658.269 635.473

3.0 609.754 593 825

3.5 , 580,649 568.846

4.0 561.850 552.767

APPENDIX I
(i) Iteration Procedure to obtain amn and Bmn
The frequency may be writtén as

m?72b? 2
B% mn+v —
fanfmn _ _ %mn 2 X
2 B m?7w?b? :
o \,.82,_,,1,—{-(2—‘0) an
Amn
tanh 5

First approximations to the values of apn and Bmn
. b . .
for various values of vy ratio have been given by

Thein Wah (1961) using a graphical procedure. These
values have been used as the initial values for the itera-
tion. Substituting an initial value in the right hand side
of the above equation, a rew value.of 8mn was obtained .

by equating tan E%‘J}L to the calculated right hand side.

Using this second approximation to PBmm, a second
approximation to amn was obtained by the relation

b2
afpn = BPmn-+2mm? - The procedure was then
repeated using these second approximations. The
iterations were repeated until the differences between
successive approximations were negligible. The resuits
of such an iteration are presented in Table 1.
(ii) Expression for Kmn

Substituting the expresson for Ymn in the relation

+bj/2 _a m
Kmn= ot J' j' Y Sin 2% dx dy
~b/2 0
| e
=-—2—-b ]. Yzmn dy
. Y bya
one obtains,
‘ 2
i tanh O%?—‘— (azmn_vm%ﬂ??z)z
"Kan = , s X
4 Cosh? ———a;’n Zemn (B?mn + vm?a? ;lg)z
Bmn
1 tan = 2

' x
4 Cos? Bma 2fBmn +(°«2mn+32mn)
2 ‘

b2
(Pmn—vm*n® —5) cmn
) (amn tanh —2—-+ an tan
(8%ma+ vm®z® 3 )

a

The values of K;; are given in Table 2.

Brmn

2




NOTATION

a

b

Cr

D

EI
Kmn

k

K,
K.

fr (X)
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APPENDIX II

Span of the bridge

Width of the bridge

y-co-ofdinate of the " beam

Flexural rigidity of the slab

Flexural rigidity of any beam

A definite integral depending on m and n
No. of beams

EL
Db

.

Pb ‘
Amblitude of the reaction of the rth Feam
against the slab

m,n,i,j Integers

Pmn

Wi
W
amn

Brn

Circular frequency of the slab alone for
the m-n*h mode

Circular frequency of the beam and slab
bridge

Deflection of the bridge

W (x, cr) Deflection of the r*h beam

Deflection of a slab bridge in.the m-—nt
mode of vibration

Frequency perameter for the slab

Frequency parameter for the slab

Mass of beam per unit length

8 (cr) Dirac~delta function in one dimension at
y==¢t ‘

2 4
Amn EB—’“];—b Frequency parameter of the slab

Pp2bs )
A SN Frequency parameter of the beam
and slab
v Poisson’s ritio

P Mass of slab per unit area.
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Fig. 14.

Values of pb%y/DJe for a bridge with a/b=4.0 for the first symmetric mode.
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