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ABSTRACT 

 The performance of an updated time-domain least-squares identification method for identifying a 

reduced-order linear system model in the case of limited response measurements and its use in structural 

health monitoring is evaluated. It is shown that the incorporation of a mass-invariability constraint 

enhances the robustness of the parametric identification procedure. The full structural stiffness and mass 

matrices are identified from the identified reduced-order model by using the condensed model 

identification and recovery method. The damage state is considered to be represented by an incremental 

stiffness degradation model. The degradation in stiffness is estimated through the minimization of an 

error function defined in terms of Rayleigh quotients. The performance of the proposed scheme is 

examined with reference to the simulated damage due to earthquake excitation in a 10-story building with 

rigid floor diaphragm. 

KEYWORDS: Detection, Dynamic Condensation, Least-Squares Identification, Structural Health 

Monitoring, System Identification 

INTRODUCTION 

 Structural system identification has gained in importance over the last couple of years as a diagnostic 

tool for the structural health assessment—primarily due to the requirements of enhanced functionality and 

reduced downtime of buildings and services. The conventional approaches to structural health assessment 

require physical access to the regions of interest in the structural system and are also very tedious and 

time consuming. The damage/degradation in structures causes reduction of natural frequencies, increased 

energy dissipation, and changes in the mode shapes. Therefore, monitoring of vibration characteristics of 

structural system should permit the detection of both the location and severity of damage. The vibration-

based system identification and health assessment is promising because substantial information can be 

gathered by only a few sensors distributed across the structural system. The system identification 

approaches can be classified as either parametric or non-parametric methods. In parametric methods, the 

structural models to be identified are characterized in terms of a finite set of parameters, such as the 

coefficients of the governing differential equations of motion, or the coefficients of the rational 

polynomial approximation for transfer function, etc. The non-parametric methods, on the other hand, 

characterize the dynamic systems in terms of impulse response functions, or frequency response functions 

derived from the direct measurements of excitation and response at various locations in the structural 

system. 

 As the stiffness characteristics are most prominently influenced by the damage, if any, in the 

structural systems, several approaches have been developed to identify stiffness, or related characteristics 

of a structural system from the analysis of its vibration signatures. Udwadia (2005) presented a method 

for the identification of the stiffness matrices of a structural system from the information about some of 

its observed frequencies and corresponding mode shapes of vibration. Pandey and Biswas (1994) 

suggested the use of mode shape curvature in detecting damage. For large and/or complex structures, 

however, the changes in mode shapes and their curvatures may be so small that their use for the detection 

of damage might not be practical. Stubbs et al. (1995) developed a methodology based on the comparison 

of modal strain energy before and after damage to identify damage in structure. However, except for very 

simple structures, moderate damage does not significantly affect the lower modes of vibration, which can 

be identified with greater reliability. Baruch and Bar Itzhack (1978) proposed a matrix update method, 

wherein a norm of the global parameter matrix perturbations is minimized with the application of 

symmetry constraint on property matrix. Many other approaches developed in this area are based on the 
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minimization of the rank of perturbed matrix with connectivity and sparsity constraint on the original 

matrix. In large scale complex structural systems the natural frequencies and mode shapes towards the 

higher end of the spectrum can rarely be identified with sufficient accuracy, which in turn affect the 

reliability of damage detection on the basis of mode shape information. Agbabian et al. (1990) and Smyth 

et al. (2000) proposed a least-squares method for the parametric identification of a linear system for 

estimating the coefficients of the governing differential equation. For a limited number of sensors to 

record the vibration response, the time-domain least-squares identification procedure yields the minimum 

norm estimates for the coefficients of the reduced order system, which may be significantly different from 

the ‗true‘ coefficients (Choudhury, 2007). This problem of non-uniqueness of the results of time-domain 

least-squares identification procedure is addressed in this study. Reduced-order equivalent linear models 

are identified for different time windows. The full system matrices are recovered from the estimated 

reduced order models and an attempt is made to detect the presence of damage by tracking the changes in 

the stiffness coefficients of the recovered full stiffness matrix of the structure. The performance of this 

scheme is examined with the help of a simple analytical model for a steel structural frame with rigid floor 

diaphragms and subjected to earthquake excitation. 

TIME-DOMAIN LEAST-SQUARES IDENTIFICATION 

 Let us consider the governing equations of motion for a multi-degree-of-freedom (MDOF) system 

subjected to the external forces  f : 

              M y C y K y f  (1) 

where,  M ,  C  and  K  are the mass, damping and stiffness matrices of the system and  y  

represents the vector of deformations at each degree of freedom (DOF). In practice, the system response 

is recorded only at a few select DOFs corresponding to the sensor locations, and we consider these DOFs 

as primary (or master) DOFs. The least-squares parametric identification would allow us to estimate the 

coefficients of the reduced-order model consisting only of the primary DOFs. By partitioning the vector 

of deformations as       ,
T

TT

s py y y , where  py  and  sy  denote the primary and secondary 

DOFs, respectively, the system considered for identification is 

                   
p p p pM y C y K y f  (2) 

where,   M ,   C  and   K  denote the inertia, damping and stiffness characteristics of the structural 

system after condensing out the secondary DOFs. The vector  pf  represents the equivalent forces on the 

primary DOFs and depends on the transformation of the full analytical model of Equation (1) to the 

reduced-order model of Equation (2). Assuming that a total of pn  number of response measurements are 

available at different sensor locations, a vector of responses, say  
1 3

( )


 pn

ir , at the i th time instant 

can be constructed as 

    11 1
( ) ( ) ( ) ( ) ( ) ( )    

p p pi i n i i n i i n ir t …y t t …y t y t …y ty y  (3) 

Considering the response at all time instants ( 1t  through nt ), a response matrix  
3

( )


 pn n
R  can be 

defined as 

  

 

 

 

1

2

 
 
 
 
 
  



n

r

r
R

r

 (4) 

The coefficients of Equation (2) corresponding to each primary DOF may be arranged as 
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    1 1 1, , , , , , , , ;   
p p pj j jn j jn j jnm m c c k k   1 2    pj … n  (5) 

where 1jm , 1jc  and 
1jk , respectively, denote the coefficients of the condensed system matrices   M , 

  C  and   K , and   1 3
( )


 pn

j  is the arrangement of these coefficients of the j th row in a row 

vector. Equation (2) can then be rearranged in the form: 

    ˆˆ ˆ  
 
R b  (6) 

where 
23ˆ ( )

  
 

 p pnn n
R  is a block diagonal matrix with the response matrix  R  on its diagonal,  ̂  

23 1
( ;


 pn

     , 
p

T

j n…  ), and   1ˆ ( )


 pnn
b  is the vector of corresponding excitation 

measurements given by 
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 

 

1
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ˆ

 
 
 

     
 
 
 


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b

b
b
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 (7) 

with         1 2, , , 
T

j j j j nb f t f t f t , 1 2 .    pj … n  Here,  j if t , 1 2    pj … n  denotes the 

equivalent forces on the primary degrees of freedom of the condensed system at time it  and are described 

in the following section. The least-squares solution of Equation (6) may be then obtained as 

    
†

ˆˆˆ  
 
R b  (8) 

where 
†

ˆ 
 
R  is the Moore-Penrose pseudo-inverse (Golub and Van Loan, 1996) of ˆ . 

 
R  The least-

squares solution computed in Equation (8) corresponds to the solution of associated normal equations 

(    ˆˆ ˆ ˆˆ     
     

T T

R R R b ). The solution vector  ̂  provides the minimum-norm least-squares 

estimates of the desired system parameters. It is often required to improve the numerical conditioning of 

the system of equations and also to impose the constraint of symmetry of coefficient matrices to eliminate 

physically inconsistent results of system identification. 

ANALYTICAL REDUCTION OF SYSTEM MATRICES 

 Since the above-mentioned time-domain least-squares parametric identification procedure can only 

identify a reduced-order model corresponding to the primary DOFs (Smyth et al., 2000), it is desirable to 

have a set of benchmark values for assessing the quality of parameter estimates before using the results of 

this identification procedure to draw further inferences. A comparable reduced-order system model can be 

obtained by the elimination of secondary DOFs from the system of equations by using the dynamic 

condensation method (Paz, 1984, 2004). Let us write the equations of motion for free vibration in 

partitioned matrix form as 

 
     

 

 

 

2 2

2 2

0

0

                
     
                        

ss i ss sp i sp s

pps i ps pp i pp

K M K M y

yK M K M

 

 
 (9) 

from which the secondary variables can be eliminated as 

             
1

2 2


          s ss i ss sp i sp p i py K M K M y T y   (10) 
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where 
2

i  is an approximation for the i th eigenvalue of the structural system, and  iT  

      
1

2 2


        ss i ss sp i spK M K M   represents the transformation matrix relating the primary 

(master) DOFs to the secondary (slave) DOFs for the current approximation of the i th eigenvalue 

obtained from the reduced-order system containing only primary DOFs. The full DOFs-vector 

    ,
T

TT

s py y  may be then expressed in terms of the primary DOFs as 

 
 

 
 
 

   
    

       
   

s i

p i p

p

y T
y T y

Iy
 (11) 

where  I  denotes an identity matrix and   iT  is the matrix relating the full-DOFs vector to the primary 

DOFs. The reduced mass and stiffness matrices are then obtained as 

            
T

i i iM T M T  and 
2

i i iK D M             (12) 

with 

     2 2                     pp i pp ps i ps iD K M K M T   (13) 

These reduced-order system matrices are used to calculate an improved estimate of the i th eigenvalue, 

which is then substituted in Equation (13) and the iterative process is repeated until the eigenvalue is 

close enough to that for the full model. This process may be repeated for estimating the next eigenvalue. 

Since the reduced mass and stiffness matrices are influenced by the choice of natural frequency, an 

iterative scheme is necessary to converge to a set of reduced matrices which have the same natural 

frequencies in the lower half of the spectrum as those calculated for the full-order system. The final 

reduced-order matrices can be used for the modeling of the forced vibration problem, for which the 

response is only monitored at the primary DOFs. The modified force vector for the reduced-order model 

in the case of excitation by base motion may be expressed as 

  
 

 1 ( )
   
     
        


ss spT

p i g

ps pp

M M
f T u t

M M
 (14) 

where   iT  is the transformation relating the DOFs of the chosen reduced-order analytical model to the 

DOFs of the full analytical model—as defined in Equation (11). The damping matrix is not considered in 

the condensation scheme as the level of damping forces is, generally, very small in structural systems, 

particularly so in the case of steel structures. 

 The example structural system considered in this study is an intermediate frame of a ten-story steel 

building with two bays as shown in Figure 1. The Indian standard rolled beam section ISMB-225 (BIS, 

1989) with yield strength yf  of 250 MPa and Young‘s modulus E  of 
52 10  MPa are used for modeling 

the frame in the SAP2000 structural analysis software. A perfect elasto-plastic constitutive behaviour is 

assumed. As a first-order approximation to the structural behaviour and also for reducing the problem 

size, the rigid floor diaphragm assumption is made and the vertical and rotational DOFs are also 

restrained. This reduces the total number of unrestrained DOFs to 10. The numerals on the right side of 

the frame in Figure 1 indicate the DOF numbers associated with different floors (assigned internally in 

SAP2000 after imposing the rigid floor diaphragm constraint). A modal damping ratio of   = 0.05 is 

assumed. The undamped natural frequencies of this system are found to be i  = 4.049, 12.048, 19.755, 

26.983, 33.560, 39.331, 44.169, 47.978, 50.702, 52.326 rad/s. The building response data is assumed to 

be recorded at the 1st, 4th, 8th and 10th floors, which correspond to the optimal locations for a 10-story 

building with rigid floor diaphragms (Heredia-Zavoni and Esteva, 1998; Datta et al., 2002). The DOFs 

associated with these floors, i.e., 2, 3, 9, and 6, respectively, are designated as the primary DOFs and the 

remaining DOFs (i.e., secondary DOFs) are condensed out by the dynamic condensation procedure. The 

reduced system matrices are obtained as 
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   M  = 

0 977 0 279 0 000 0 000

0 279 1 527 0 392 0 000

0 000 0 392 1 335 0 157

0 000 0 000 0 157 0 624

    
 
   

 
    
 
    

×10
6
 kg 

and  (15)  

   K  = 

5 850 1 46 0 000 0 000

1 46 2 560 1 10 0 000

0 00 1 10 3 290 2 19

0 00 0 00 2 19 2 190

     
 
     
 
      
 

     

×10
8
 N/m  

These matrices will now be used as benchmarks for comparing the system matrices estimated by the least-

squares identification process. 

 

Fig. 1  Structural frame used for analysis 
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DATASET FOR SYSTEM IDENTIFICATION 

 In the time-domain least-squares system identification approach, it is necessary to have the excitation 

and the response data of the system. The building response data is generated through a non-linear 

dynamic analysis of an analytical model in the SAP2000 environment. The dataset consists of relative 

displacement, relative velocity and relative acceleration responses at each of the designated floors 

assumed to have vibration sensors, namely, the 1st, 4th, 8th and 10th (roof) floors. A scaled time history 

(with the scale factor of 2) of the Northridge, California earthquake ground motion recorded at Pacoima 

Dam Upper Left Abutment (with the closest distance of 8 km to the fault rupture) on January 17, 1994 for 

the component 104 (as in the PEER database
1
) and sampling interval of 0.02 s is considered as the base 

excitation. This ground motion has the peak ground acceleration (PGA) of 1.58g. Figure 2 shows the 

(unscaled) time history of this ground motion. 

 

Fig. 2  Northridge earthquake ground acceleration time history 

 The recorded time history is scaled (by a factor of 2) to enforce the development of plastic hinges in 

the structural frame during the shaking. A zero-mean Gaussian random noise is added to simulate the 

effect of measurement noise such that n  = 0.05 ,s  where n  denotes the standard deviation of noise 

and s  represents the standard deviation of the actual time-domain signal. A representative plot of the 

computed relative acceleration, velocity and displacement time histories at the 10th floor is shown in 

Figure 3. All time histories are sampled at 0.02 s interval. In the case of seismic excitations, response data 

is generally acquired by using accelerometers, which record absolute accelerations at the base of the 

transducers. The relative acceleration response is then obtained by subtracting the base acceleration from 

the recorded floor accelerations. The velocity and displacement time histories are obtained by integrating 

the acceleration time history filtered to correct for baseline errors. These time histories are then used for 

the least-squares system identification. However, considering the full-duration data at once smears away 

the time-varying information and one only gets gross time-averaged information to draw inferences. Since 

the damage of building frame during an earthquake is a gradual process, it is expected that this effect 

should be noticeable in the parameter estimates obtained from the data segments from small time 

windows. The length of the data window is an important consideration for any such moving window 

analysis and is decided by examining the temporal evolution of the frequency content in the structural 

response time history. The temporal evolution is depicted by the spectrogram, i.e., the plot of the squared 

amplitude of the short time Fourier transform (STFT) of the response time history. The STFT of a signal 

may be defined as 

 ( ) ( ) ( ) d





  

iwuSf t f u g u t e u  (16) 

                                                 
1
 Website of PEER Strong Motion Database, http://peer.berkeley.edu/smcat/ (last accessed on January 2, 2010) 

http://peer.berkeley.edu/smcat/
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where ( )g u t  denotes a real, symmetric window in time domain and serves to localize the Fourier 

integral in the neighbourhood of u  = .t  The spectrogram is defined as the energy density of the STFT as 

 
2

( ) ( )  S t Sf t   (17) 

 The length of window function is an important factor in STFT-based time-frequency analyses—too 

short a window enhances the resolution in time at the cost of poor resolution in frequency domain, 

whereas too long a window provides a sharp spectral resolution with low resolution in time domain. In 

this study a 256-sample Hann window with 0.9 overlap factor is used for calculating spectrograms. The 

variation of the energy of various harmonics in a signal with respect to time is color coded with large 

amplitudes shown in red to very small amplitudes shown in violet colour. Figure 4 shows the 

spectrograms of the ground motion and the relative acceleration response at the roof level of the example 

building. 

 

 

 

Fig. 3  Computed relative acceleration, velocity and displacement time histories at the 10th floor 
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(a) Ground motion (b) Relative acceleration at roof level 

Fig. 4  Spectrograms of the acceleration time histories 

 From the examination of the above spectrograms and the time histories (as shown in Figures 2 and 3), 

it may be seen that the period of strong shaking, marked by the S-wave arrival, commences after about 4 s 

from the onset of shaking. This time span of 4 s is also marked by an almost uniform distribution of 

energy with respect to frequencies. A time window of 4-s length is therefore considered to be adequate to 

capture the time-varying characteristics in the dataset. Moreover, the data after 20 s can be neglected from 

the moving window analysis as the amplitude of shaking is very small and is therefore inconsequential for 

the purpose of damage detection. This reduces the total time frame for the dataset to 20 s with 5 time 

windows of 4 s each. 

LEAST-SQUARES IDENTIFICATION RESULTS 

 Since the least-squares solution procedure yields a minimum-norm solution for the unknown system 

parameters, the estimated coefficients for the reduced-order model can be greatly underestimated 

(Choudhury, 2007) and a suitable constraint on the possible solutions is desirable. As the process of 

damage in a structural system during an earthquake does not lead to any changes in the mass/inertia 

characteristics of the structure, this constraint of the mass invariance can be imposed on the possible 

solutions of the least-squares identification. This mass-invariance constraint is imposed by including a 

requisite number (i.e., as many as the number of mass terms in the parameter vector  ̂ ) of the identities 

of the type 

 
ij ijm m    (18) 

to the system of equations given by Equation (6). Here, 
ijm

 denote the analytically computed mass 

coefficients of the reduced-order model as in Equations (15) and (18). This process is similar to the ‗stiff 

spring‘ approach for imposing prescribed values for some variables in a system of linear algebraic 

equations. The coefficient   should be chosen large enough so that the mass-invariance identity has 

substantial weight in the solution of equations. A good choice is to consider   to be 10
3
–10

5
 times the 

largest coefficient in  R . The augmented system of equations for the least-squares solution after the 

inclusion of mass-invariance constraint may be expressed as 

 

 
 

 
  *mic mic

ˆˆ
ˆ

ˆ

          
      

bR

R R



 (19) 

where  micR  is a matrix of  s and 0 s such that the mass-invariant constraint can be incorporated. 

Another physical constraint of the symmetry of mass and stiffness matrices is imposed by considering 

coefficients from the upper triangular regions only in the parameter vector  ̂  in Equation (19) and by 

rearranging the elements of ˆ 
 
R  so as to associate the multiple of an element of lower triangular part 

with its symmetric counterpart in the upper triangular part (Smyth et al., 2000). For the example building 
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and the dataset for the first time window of 4 s, the identified system parameters for the reduced-order 

model without the mass-invariant constraint are obtained as 

 
idn

  M  = 

0 135 0 415 0 147 0 277

0 415 0 675 0 792 0 103

0 147 0 792 0 593 0 384

0 277 0 103 0 384 0 038

    
 
   

 
    
 
     

×10
6
 kg 

and 

 
idn

  K  = 

0 70 0 680 1 20 0 950

0 680 0 25 0 970 0 68

1 20 0 970 1 39 1 150

0 950 0 68 1 150 0 79

      
 
     

 
      
 
      

×10
8
 N/m  

whereas these parameters after applying the mass-invariant constraint are estimated as 

 
idn

  M  = 

0 977 0 279 0 000 0 000

0 279 1 527 0 393 0 000

0 000 0 393 1 335 0 157

0 000 0 000 0 157 0 624

    
 
   

 
    
 
    

×10
6
 kg 

and 

 
idn

  K  = 

4 060 1 24 1 016 0 69

1 24 2 918 0 93 0 167

1 016 0 93 2 823 1 25

0 69 0 167 1 25 1 922

      
 
     
 
      
 
      

×10
8
 N/m   

On comparing these estimated values with the benchmark values shown in Equation (15), it may be seen 

that the parameter estimates obtained after imposing the mass-invariant constraint are in good agreement 

with the analytical results. The error in the identified stiffness matrix with respect to the analytically 

condensed stiffness matrix, evaluated in terms of the Frobenius norm, is 55% when the mass-invariant 

constraint is not used and 19% with this constraint in place. It may be mentioned here that some good 

results for the modal frequencies and damping of large-scale structures have also been obtained with the 

least-squares method without the use of mass-invariant constraint (Smyth et al., 2003). The use of mass-

invariant constraint is aimed at improving the robustness of the least-squares identification of the system 

property matrices themselves and not just the modal characteristics. The natural frequencies of the 

(analytical and identified) reduced-order models are shown in Table 1 along with the first four natural 

frequencies of the full analytical model. 

Table 1: Natural Frequencies of Analytical and Identified Models 

Model 
Natural Frequencies (rad/s) 

Mode 1 Mode 2 Mode 3 Mode 4 

Analytical Model 4.049 12.048 19.755 26.983 

Analytical Reduced Model 4.085 12.718 25.186 29.314 

Identified Reduced Model 3.793 11.935 14.595 25.920 

 It may be seen that the first two natural frequencies of the identified reduced-order model are in good 

agreement with the first two frequencies of the analytical model. Therefore, the first two eigenvalues of 

the identified reduced-order model will be used for the further analysis for damage identification as 

described next. 
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RECOVERY OF FULL STRUCTURAL MATRICES 

 The identified stiffness coefficients correspond to the mathematically contrived reduced-order system 

and it is not possible to ascertain the health of physical structure by examining these coefficients. For the 

identification of damage, it is necessary to reconstruct the full-system matrices from the identified 

reduced-order matrices. A matrix updating based formulation to identify the incremental changes in the 

elements of stiffness matrix is proposed based on the condensed model identification and recovery 

method (CMIR). Koh et al. (2006) used an eigensystem realization algorithm (ERA) to identify a 

condensed model utilizing complete time-domain records. The proposed method differs only in the use of 

the least-squares time-domain identification method with the mass-invariant constraint for the 

identification of condensed models in different time windows, such that a progressive monitoring of the 

changes in the stiffness coefficients with reference to the undeformed configuration is allowed. 

 Let  aK  and  aM  denote the full stiffness and mass matrices of the virgin, undamaged system and 

  pK  and   pM  be the full stiffness and mass matrices of damaged system. Further, let  K  

represent the incremental changes in the stiffness matrix due to damage. It is possible to relate the system 

matrices for the undamaged and damaged states as 

        p aK K K  and     p aM M  (20) 

where the stiffness increments  K  are to be determined iteratively so as to minimize the quadratic 

error function given by 

 

2
2

1

1


 
   

 


j

j j

R

R
  (21) 

Only two terms corresponding to the first two modes of vibration are considered in constructing the error 

function because for a reduced-order system of size N, approximately first N/2 eigenvalues correlate well 

with the eigenvalues of the original, full system. In Equation (21) jR  and 
jR  respectively denote the 

Rayleigh quotients computed from the j th mode shape vectors for the analytically condensed system 

matrices and the identified reduced-order matrices and are computed as 
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 (22) 

where  
ji  and  

jp  are the j th mode shapes of the identified and analytically reduced matrices, 

respectively, and   iK  and   iM  respectively denote the reduced-order stiffness and mass matrices 

identified by the time-domain least-squares identification procedure. Similarly,   pK  and   pM  

respectively denote the analytically reduced stiffness and mass matrices as obtained from the updated 

structural matrices   pK  and .  pM  The iterative procedure to determine the incremental changes in 

the stiffness matrix,  K , requires the computation of the error function for a configuration of 

incremental stiffness matrices and is arranged in the following order: 

1. Considering the current values of the vector of design variables corresponding to the incremental 

stiffness matrix  K , the updated structural stiffness   pK  is determined as in Equation (20). 

2. The matrices   pK  and   pM  are dynamically condensed to retain the terms corresponding to the 

primary DOFs only. Let   pK  and   pM  be the analytically reduced updated matrices. 

3. The Rayleigh quotients based on the identified and reduced updated matrices are calculated by using 

Equation (22). 
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4. The error function for the current estimate of the incremental matrix  K  is calculated by using 

Equation (21). 

 Due to the symmetry of the stiffness matrix, only the upper triangular elements of  K  are 

considered as the design variables—a total of 19 elements for a 10-story building with rigid floor 

diaphragms—for the minimization problem. The design variables are numbered row-wise for the upper 

triangular part of  .K  The sequential quadratic programming is used to minimize the error function 

defined in Equation (21) with respect to the design variables, i.e., stiffness increments. The upper and 

lower bounds on the stiffness coefficients are chosen to be 0 and 30% of the original stiffness coefficients, 

with negative sign added to indicate the nature of stiffness degradation with damage. The starting vector 

to begin the optimization process is picked by randomly choosing the design variables from the given 

range. To guard against the possibility of converging on a local minimum, the minimization process is 

repeated 40 times with randomly selected initial design vectors. The set of design variables corresponding 

to the minimum   (in 40 trials) is assumed to give the desired incremental matrix. This procedure is 

carried out for all the five time windows. The values of variables obtained for these windows after 

optimization are shown in Figure 5 and Table 2. 

 

(a) First window (0-4 s) 
 

 

(b) Second window (4-8 s) 

 

 

(c) Third window (8-12 s) 

 

 

(d) Fourth window (12-16 s) 

 

 

(e) Fifth window (16-20 s) 

Fig. 5  Final values of design variables for different time windows 
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Table 2: Changes in Stiffness Coefficients (×10
5
 N/m) in Different Data Windows 

Variable 1st Window 2nd Window 3rd Window 4th Window 5th Window 

1  1,1k  −0.0005 −0.0130 −2.2558 −0.9638 −0.0025 

2  1,3k  −0.0003 −0.6460 −1.3168 −0.5232 −0.0000 

3  1,10k  −0.0006 −0.0611 −0.2906 −0.5977 −6546 

4  2,2k  −0.0014 −2.5440 −2.6338 −2.6440 −2.5147 

5  2,4k  −0.0009 −1.3170 −1.1087 −1.3170 −1.3170 

6  3,3k  −0.0006 −1.6953 −2.2569 −0.8937 −0.6399 

7  3,5k  −0.0004 −0.1818 −1.1664 −0.7466 −0.9012 

8  4,4k  −0.0005 −1.3783 −0.7492 −1.3916 −0.2725 

9  4,5k  −0.0008 −0.0351 −0.0095 −0.1774 −0.0399 

10  5,5k  −0.0006 −0.9041 −1.5990 0.9988 −1.5932 

11  6,6k  −0.0004 −0.1771 −1.7523 −1.2517 −0.9868 

12  6,8k  −0.0003 −0.0460 −0.0002 −0.2451 −0.0153 

13  7,7k  −0.0008 −0.5930 −2.1749 −0.9826 −0.6468 

14  7,9k  −0.0004 −0.0120 −0.1268 −0.8811 −0.6628 

15  7,10k  −0.0003 −0.7250 −1.2371 −0.1802 −0.5957 

16  8,8k  −0.0009 −0.0254 −0.5655 −0.0427 −1.6566 

17  8,9k  −0.0004 −0.0125 −0.0005 −0.4863 −1.1847 

18  9,9k  −0.0010 −2.6834 −2.8348 −3.2201 −2.9340 

19  10,10k  −0.0006 −0.6943 −0.0324 −0.4647 −0.2237 

 The changes in the first time window (from 0 to 4 s) are negligible in comparison to the original 

stiffness coefficients. This indicates that the structure has not suffered any damage during the first time 

window. For all the subsequent time windows, the design variables 4 and 18 consistently show a 

significantly large stiffness decrement in comparison to the other variables. These two variables 

correspond to the stiffness coefficients corresponding to the DOFs 2 and 9, respectively. This is in 

agreement with the actual damage state of the structural system after the earthquake excitation in the 

SAP2000 simulation run with the formation of plastic hinges at the ground and eighth floors as shown in 

Figure 6. However, there are a number of inconsistencies as well, e.g., there are little or no changes in the 

coupling terms for the DOF 9 to the adjacent DOFs. In addition, there are some false alarms, which are 

more prominent in the third data window. For the simple analytical model considered in this study, it is 

possible to segregate these anomalies as outliers and discard those but it may be difficult to take a 

definitive call in the case of a more complex and realistic analytical model. 

CONCLUSIONS 

 A matrix update method based on the reduced-order model identified by the time domain least-

squares identification procedure is proposed. The effectiveness of the proposed identification procedure 

for damage detection is demonstrated with the help of an example problem of a structural steel frame 

damaged by an earthquake ground motion. The 10-story frame is modeled in SAP2000 to simulate the 
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damage during the earthquake excitation. A mass-invariant constraint is proposed for use with the time-

domain least-squares identification procedure and is found to be effective in improving the robustness of 

the identification procedure. 

 

Fig. 6  Damage state of frame after excitation 

 A moving window analysis is performed to track temporal changes in the stiffness properties of the 

structural system. The model identification and recovery method is used to recover the full-system 

matrices from the identified reduced-order matrices for each of the five time windows considered in the 

analysis. An optimization problem is formulated to identify the required increments in stiffness 

coefficients in each time window. It is observed that the design variables 4 and 18 (associated with the 

DOFs 2 and 9 of the structural frame of Figure 1) are consistently large in all time windows, except for 

the first one, as compared to the other variables. In addition, the magnitudes of these two variables are 

approximately same across all time windows (except for the first window), while other variables exhibit 

relatively more variations over time. The consistent indications of reduction in stiffness corresponding to 

these design variables suggest damage in the ground and eighth floors of the structural frame. 

Nevertheless, there are also a number of inconsistencies in the identification results, which are easily 

recognized as anomalies and discarded in the simple example system considered in this study. However, 

the results of parametric identification of a chosen reduced-order model from different time windows and 

their extrapolation to a full model may not work well in more realistic and complex systems. In this 

regard, it would be better to use the time-domain least-squares identification procedure for estimating 

modal parameters as those are better constrained than the stiffness (and/or mass) coefficients. 
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