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FOOTING RESPONSE' UNDER VIBRATORY LOADING
Robert L. Kondner* and Bruce B, Schimming**

SYNOPSIS

The dynamic response of a soil-footing system subjected to vertical vibratory loading is
analyzed using the equation of motion with the kinematic and force parameters represented in
phase diagram form. Large scale prototype circular footing tests on cohesive soil are analyzed.
Dissipation stress function amplitude is given as a function of the strain rate amplitude and the
- energy storage or restoring stress amplitude is presented as a function of a nondimensional
displacement amplitude. Dissipation and restoring response are both nonlinear. The physical
variables considered include size and mass of the footing, static stress level, footing displace-
ment, damping of the system, apphed dynamic force, phase angle and frequency of loadmg
The response includes diameters ranging from 62 inches to 124 inches, weights from 12850 Ibs.
to 51280 1bs., applied force amphtuncs between 525 lbs. and 52000 lbs ., and frcquenc1es up to
the resonant values.

INTRODUCTION

The degree of complexity of many of the problems currently confronting the field of
soil dynamics is such that the soil response under various loading conditions is extremely
difficylt to adequately estimate. Theoretical developments in the soil dynamics field, in general,
have been highly restricted with regard to their applicabilty to represent actual field conditions
because of general lack of basic knowledge of the response behavior of soils and soil-structure
systems under a variety of loading conditions.  This difficulty is due to the complexity ofsoil
as a structural material and also to the complicated interaction of the soil and the structure
being supported. . Dynamic studies in soil mechanics seem to fall into two catagories; namely,
. the response of soil-structure systems and the determination of dynamic soil properties. Present
knowledge of soil properties indicates that the general forms of stress-strain-time relations will
- probably be very complicated, nonlinear relations which may take the form of integral equa-
tions. In addition, nonlinearities may arise because of the soil-structure interaction as well
as the devclopmcnt of finite deformations..
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The purpose of this paper is the analysis of the response of a full scale soil-footing
. System using the equation of motion directly, with the kinematic and force parameters repre-

sented in phase diagram form. Dissipation stress function amplitude and restoring stress

function amplitude relations are given for field situations.

There are a multitude of transient and steady state dynamic problems of practical im-

portance involving soils and soil-foundation systems which can be represented by the differential
equation of motjon

‘, BX + R; + R, = Fq (1) o o
where : . ,
X = acceleration of the dynamic system : ,
B ' = a function of the mass and distribution of mass of the dynamic
system ' ‘ '
R, == energy dissipation function

7
!

restoring function of the system ‘ ‘
Fa(t) = applied dynam_ic forcing function which is a function of time,
and the dot indicates diﬂ‘érentiation with respect to time. Although the form of Eq.. (1) is one

dimensional, it can be easily written in functional form in several dimensions. The variable x
is considered to be a generalized coordinate and

hence symbolizes a variety of motions inclu-
ding a rotation, g, about some axis. TSR

In order to attempt to develop sol.:utiohs to Eq. (1), one must know the "explicit form
of the function B as well ‘as the forms of the. energy dissipation function R, and the emnergy
storage or restoring function R,,. The functions R; and R,-are manifestations of the stress-
strain-time response of the particular soil under consideration as well as the geometry involved
‘and, hence, in general, unknown functions. . Tt is important:to note that the functions R, and
R,, as given in Eq. (1), may be quite general nonlinear functions and include 'geometry and
- relative mass effects. In addition, the functional B isa function of the interaction of the
particular soil-structure (s‘oil-,f_'oﬁndation-)\ system under consideration; that is, the soil type,
typesand geometry of the structure, and the type as well as magnitude of the loading. = Thus,
- realistic theoretical solutions to Eq..(1),.as well as other systems of equations applicable to
~ various static and dynamic phenomena in soil mechanics, require a knowledge of ' stress-strain-

time response of soils. No such relations are available at present. ‘

Theoretical solutions of Eq. (1) have been given for highly idealized, simplified,
assumed forms of R;, R, and B.  However, in general, these solutions are highly restricted
with regard to their applicability to represent actual field conditions, and they have faild to
agree in many respects‘with the results 6f experimenta] studies. In addition, the most exten-
sive experimental studies are on models or relatively small footings with prototype investiga-
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“tionis quite limited in scope. This is clearly indicated in the literature on 'soil dynamics. .
Since’ the present paper is concerned with \va‘rlioils‘ aspects of the determination
of the funcrions R, and! R,, the basic approach lies in the controlled utilization of the differ-
ential equation of motion itself. By testing soil-footing systems with a controlled or prescribad
forcing function of time, Fa (t), and making appropriate méashrements, it is possible to
‘determine explicit values of Ry and R, in Eq. (1), It would be desirable that these functionals
be expressed in the form of stresses in order to obtain maximum generality and a possible
correlation between various static and dynamic phenomena from both t‘”he load-deformation
and stability viewpoints. By ;tes'tin‘g soil specimens in the laboratory with similarly controlled
61' prcécribed forcing functions, it may be possible also to use the diﬂ'erentikaly ‘equatio‘n of
motion to obtain the energy dissipation and restor/ing functions and, hence, form a possible
correlation between the soil response properties,‘as determined by the two methods (laboratory
soil test and prototype foundation test). Such a correlation might allow extrapolation of the
prototype test results on specific soils to other soil types. An investigation of ‘vibratory testing
of soil specimens in the laboratory has been undertaken by the senior author with the initial
phase" given by Kondner (1961, 1962) and more recent results:;eﬁdrted by Kondaer, Krizek,

an,_(f Haas ( 196‘3)‘. \ :

Another method of greatly expanding the range of pr’abtical usefulness of the protofyp_q :
tést programs is to pkpand the range of variables by conducting simple sniall scale model tests,
designed and tested vsing nondimensional techniques. To insure realistic model representation,
similitude of model and prototype, the actual test results from'. the prototype studies can be
a control and check on'the modéi study. Such a model-prototyp'e ,fcedback{ controlvan'd check

~ system in conjunction with nondimensional techniques might greatly enhance the réliability of

“Joading are considered to be harmonic wave forms, the displacement, x, can be written

model methods as one of the tools of the soil-foundation field.
THEORETICAL CONSIDERATIONS

If the steady state displacement-time ‘records of prototype footings under vibratory

@

X = X0 COS ot

~while the applied forcing function, Fa, is given as a harmonic function of the same frequency

Fa = Fpcos (ot +3) L « ~ ~(3)
in which o a " o |
‘ X = footing displacement at any time

Xo = displacement amplitude
Fa = applied force at any time
Fp = force amplitude |

@ = frequency of loading

) ) — phase angle between the force and displacement vectors
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Inherent in such a harmonic consideration is the concept of linearity, since the motion in
nonlinear vibration may be periodic but not harmonic. . Previous research and the soil
mechanics literature indicéte that soil is a nonlinear material. Névertheles‘s, depending upon
the degree of nonlinearity, it is possible to use a harmonic” approximation for the response,
particularly when only amplitude data are being considered. ‘

The displacement and force given by Eqgs. (2) and (3) are simple .harmonic functions. of
time, It is often advantageous to represent a simple harmonic function in terms of a rotating
vector, In Fig. 1 the amplitude of vibratory displacement, xo, is taken as the length of the
vector and is rotated about an axis through the end of the vector and perpendicular to the plane
of the paper. By uniformly rotating the vector, its projection, x, on any fixed line in the plang
of the baper will change aCCOrding to Eq. (2). ‘ '

Figure 1 FROVté&ti?nkg Vector Représéntati’on of Harmonic Motion

_Utilizing constructioﬁis:‘”-simi]ar to that given in Fig. 1, it is possible to represent the
various terms in Eq. (1) as rotating vectors. Consider that R, (t) and R, (t) are functions of
‘the velocity, X, and displacement, x, respectively. The resulting displacement is written

X = Xo COSE w 1 o S @
‘While the velocity, x, and acceleration, X, are written as ' Y
i=fowsin6t ‘ ‘ ‘ - (5)
X=—xolcosat o - ‘ (6)
Consider the special case in which the forcing function is_generated by the centrifugal
force due to a rototing eccentrically mounted mass. The forcing function can be written as
Fa = Fp cos (ot + §) = Meu? cos (ot +§) . - %)
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‘in which M, is the eccentric mass , € is s the eccentr1c1ty, and ‘the force amphtude FD, s
FD—Moew2 ~ AV e ®)

Flgure 2 Phase Dxagram Klnematlc Parameters. and Force

Smce the dlsplacement is a cosine function, the velocity is a negative sine functmn and the
acceleration is a negative cosine function; the velocity and acceleratlon are 90° and 180°,
respectively, out of phase with'the dlsplacement Fig. 2 is a vector diagram of the displacc-
ment, velocity and acceleration. ‘The angles between the ‘vectors are called phase angles and
the diagram itself is called a phase dxagram Since all of the vectors in Fig. 2 are rotating at
the same frequency, they may be cons1dered as turmng like the spokes of a wheel, preserving
their relative pos1t10ns in the wheel.

~ Using D’Alembert’s prme:lple ‘the inertial telm Bx is a force whose direction is opposite
to that of the acceleration vector. The restoring function vector R, (x) is opposite to that of

the displacement and the dissipation. function vector Ry (x) is ‘in the .opposite direction of the
veloclty Thus, the phase diagram for the force system can be constructed as given in Fig. 3
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for the situation in which the forcing function Fq leads the displacement function by the
phase angle 5, By resolving the forcing function into two components parallel and perpendi-
cular to the displacement vector and then applying the equilibrium conditions at an instant of
time, one obtains the following relations:

i

R, (x) — Fpsin § = 0 ©)
and | ' | |

Bx — Ry (x) + Fpcos § = 0 o (10)
Egs. (9) and (10) give the amplitude of the dissipation function R, (t) as |

R; (x) = Fpsin § | ‘ (11)
and the restoring function amplitude as -

R; (x) = Bx + Fpcos § ' ’ (12)

: 0

Figure 3 Phase Diagram; Force Parameters
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The same relations can be obtained directly from the equation of motion. Substitution
of Eqgs. (6) and (3) into Eq. (1) gives

—mﬁwmm+mmﬂngwm@wa (13)
Since R,(t) and Ry(t) can be written as
| Ry(t) = Ry(x) sin ot | (14)
and: ‘ ' ’
Ry () = — R (x) cos ot, ’ (15)
substitution into Eq. (13) gives |
—Bu2x, €0s at-+R;(x) sin ot—Ry(x) €08 wt=Fp cos (at+3) ; (16)
For the condition ot=7/2, Eq. (16) gives
| R, (x) =—Fpsine §, . | . (17)
‘and for the condition ot = 0, it gives ,
R; (x) = — [Fpsin (90° + §) + B uixo] (19
or o SRR |
R; (x) =— [Fpcos § + B v*%] | | (19)

The negative signs in Egs. (17) and (18) mdlcate that the vectors R; (x) and R, (x) are
in the directions opposite the velocity and displacement vectors, respectively. The above
relations can also be developed for lag phase angles instead of lead phase angles. In the above
development, the explicit functional form of R; (x) and Ry (x) have been left open; that 1s,

specific form have not been assumed.
3
By Eq. (1) by a characteristic area A, one obtains.

Bx + R, (t) + Rz (t) ‘ Fa (t) | (20)
‘ A - A ,

which can be written in terms of stresses as- .

)+ o () +oa(t) =va(® | | 1)
where A ‘

o) (t) = inertial stress as a function of time,

o, (t) = dissipation stress as a function of time,

o, (t) = restoring stress as a function of time,

oa(t) = dynamic stressing function of time.

Dlvxdmg the dissipation and restoring functions of Egs. (14) and (15), respectively, by
the characteristic area A, one obtains

o () = o (x) sin ot : - : (22)‘
and | ‘ | |
o (1) = — o3 (x)cos ¢ . S (3)
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where o, (;() and o, (x) are the dissipation stress amplitude and restoring stress -amplitude,
respectively. These amplitudes can be written ‘

o (%) =Ri\f<) | o e
and )
' s () =8, feX)

where R, (x) and R, (x) are given by Egs. (11) and (12), respectively.
. PROTOTYPE TEST RESULTS

The senior author has been involved in the analysis of the results of g number of
prototype footing tests conducted using vertical sinusoidal forces generated by the centrifugal
force due to a rotating eccentrically mounted mass. The test results analyzed in this paper
were obtained from reinforced concrete circular: footings 62 inches, - 88 inches, 108 inches
‘and 124 inches ip diameter resting on the surface of a relatively wniform silty . clay.,
Unfortunately, extensive soil test data are not available for the test area. ' Each footing was
loaded Symmetrically with ballast secured to the footing to a static pressure of 4:25 pgi,
‘This static pressure included the weight of the footing, weight of the vibrator and ballast
load.  Sinusoidal forces were applied for frequencies ranging from approximately 6 cps to
30 cps, subject to the limitations of the vibrator, This corresponded to force amplitudes,
Fp, rangingfrom approximately 525 Ibs. t0:52,000 1bs., depending upon the magnitude of the
eccentric mass, the eccentricity, and frequency of oscillation. All footings were carefully
instrumented with various configurations of  transducers and pickups for both test control and
displacement measurement. Special instrumentation was used to measure the phase angle,
8, qbetween the applied force and the footing.dis,p]acgmtie‘nt. For a f()’OtiIlg test, a particular

ol(i), as a function of the strainfraf,te ,a,xhplitudc for the experimenta] program with the static

stress level of 4°25 psi. The dissipation stress amplitude, o,(x), was calculated by dividing
the dissipation function amplitude of Eq. (11) by the footing area ag indicated in Eq. (29)
while the strain rate amplitude is the product of the displaccmentjamplitude and the
frequency of oscillation, © - D , ; ~

The amplitude of the restoring function is represented in Fig. 5 by the restoring stress
amplitude as a function of the nondimentional displacement amplitude, xo/d, where d is the:
diameter of the footing, The restoring stress amplitude, oy(X), is obtained by dividing the
restoring function amplitude of Egq, (12) by the footing area as indicated in Eq. (25).
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Static Stress:
4.25 psi

0 L 2 3 4
Xo= Xow IN |n /sec. "
Flgure 4 stsxpatlon Stress Amphtude versus Strain Rate Amphtude Prototype Tests

' Figs. 4 and 5 include the amplitude-frequency-phase -angle data  with mcreasmg“
frequency up to resonant frequency. . For frequencies greater than - resonant. frequency, both
the dissipation stress amplidude and restoring stress amphtude decrease rapidly and fall
below the response given in Figs. 4-and 5. It is interesting to note that Figs. 4 and 5 include’
the effects of varying area, static weight, frequency, -eccentric setting, eccentric mass and
dlsplacement amplitude. The areas included are 20°97, 41:94, 62:92, and 83'89 sq ft: while

~ the static weights included 12,820, 25, 640, 38,460, and 51,280 lbs,, respectively. -

'A“lthot‘l‘gh’*ai’pomt*b‘y“‘ point linear approximation was” uséd” by  virtue of ‘the dssumed’
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Figure § Restoring Stress Amplitude versus Non-Dimensional DiSplitude; Prptotypc Tests’

harmonic wave form and subsequent representation with phase diagrams, the prototype
footing response of Figs. 4 and 5 is definitely nonlinear. Thus, linear approximations may
be useful in studying various aspects of soil-foundation response. It must be emphasized
that although the presentestudy is relatively extensive for a prototype investigation, it is quite
limited in terms of the many factors that influence ‘dynamic response of soil-foundation
systems. The loading was restricted to sinusoidal and may be associated with" that of
interest in problems of machine vibration. Further analysis must be conducted to study - the’
" effects of §ize of footing, mass. of the system, mode of vibration, magnitude of displacement,’
static stress level, magnitude and type of loading, frequency, resonant, fr,équenqy,:;j;and the
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characteristics of the soil on which the foundation is supported. It is felt that some of these

effects are responsible for the seatter in Figs. 4 and 5; hence, the necess:ty for a more detailed
analysis,

CONCLUSIONS

Prototype response of circular footings subjected to vertical vibratory loading can be
convenijently analyzed with an amplitude linear approximation of assumed harmonic motion
. using the equation of motion and kinematic as well as force parameters in phase dlagram
form. The energy storage or restoring stress amplitude can be represented as a function of a
nondimentional displacement amplitude and the dissipation stress function amplitude can be
related to the strain rate amplitude. Both the dissipation and restoring aspects of the
cohesive soil-footing response are nonlinear. The response includes dxamet@rs ranging from
62 to 124 inches, weights from 12,820 to 51,280 bs., applied force amplitudes between 525 to
52,000 Ibs., and frequencies up to the resonant values.
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