'VIBRATION ANALYSIS OF STRUCTURES BY THE ENERGY METHOD

Dinabandhu Mukherjee*

SYNOPSIS

This paper deals with the Energy method'fqr deter-
mining natural fteque’nc‘ies of structures. The frequency
orthe period of. vibration is calculated by comparing
the potential enetgy of the  deflected structure with-its
Kineti¢ energy: as it passes through its normal static
position. Rayleigh’s principle, the static deflection
method or a special case of Rayleigh’s method;. Ritz’s
development and' Southwell  Dunkerley: extension - of
Rayleigh’s principle are discussed.

A method, called the method of “Dynamié Conver-
gence”, for:solution ‘of multistoreyed: framed struetures,
is-explained.- A 10-storey reinforced concrete building
frame; which has been originally designed by the: author
for-an-earthquake allowance of 20%.g for comparing
the increase in cost due to earthquake resistant design,
is analysed for its period-of vibration by applying. the
method of Dynamic Convergence and the - Energy prin-
ciple. Any desired accuracy can be obtained by this
method and therefore it is comparable to the other
classical methods.

INTRODUCTION

In the design: of an earthquake proof structure; the
basie seismological data required are the natural  period
of vibration of the structure and-the natural period of
vibration of the ground. The degree to which the
natural period-of vibration of a structure: synchronizes
with the ground movements may determine whether or
not the building will suceessfully withstand the earth-
quake.
building may also be- required in areas other than the
earthquake zones. Thus the housing of a -machine
having reciprocating motion in an - existing. bhildingn or
the design of a new building for such use might well be
conditioned by a vibration study of the building. Diff-
erent methods are available for calculating period of

-Again, study of vibration characteristics ofa"

vibration of structures. In this paper Energy method
for determining the period of vibration of multi-storeyed
frame is discussed:
Energy Method:

The differential equation of motion for a mass m
performing su:nple Harmonxc Motion can be written as-

mx + Kx = O or X + p2x=0.........(1)[P2=*

where K i§ the spring constant or the restoring force.
This equation is satisfied for
X=occospttcysinpt
whence we can see that the time périod T = 5 or the
2n
Natural frequencies can sometimes be advantageo-
usly calculated by using the law of conservatlon of ener-
gy provxded that ‘damping is negligible. Our dlscusswn
will be based on a study of the potentidl and the Kine-
tic energies of a system in motjon and their s:mple rela-
tion with the system’s ‘natural frequency parameter.

frequency f =

If we multiply equation (1) by X , we have XX +

_1‘1% xx = 0. This expression lends itself to a direct
integration, viz. '
1y + l —K— x2 = C
72X
) 1 ¢ 2 l y 2 - iy
or 7mx + 3 Kx?=Cm 2)

The first term of this expression is seen to give the’ inst-
antaneous Kinetic energy of the motion of the mass, and
the second term represents the instantaneous potential
energy content of the linear restoring element with refe-
rence to the potenﬁal energy level requlred by the static
equ111br1um posmon of the system. When the dlsplace-
ment X isa maximum X the velocity X is zero “and all
the dynamxc energy of the syatem is potentlal Slmllarly,
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when the displacement xis zero, the veloci,tyx' isa

maximum X and all the dynamic energy of the system
is Kinetic. The energy equation of a vibrating system

can therefore be written as

Lmir 4L Kxr = 3 Rx0= Lk =co=p ‘0

If the characteristic deflection curve of a_ structure,
i.e. the maximum displacement of different points along
its length is known, the work done upon the structure
by the oscillating masses which is the potential energy
of the deflected structure can be calculated. By the law
of conservation of energy, the Kinetic. energy of the
system as it passes through its figure of rest becomes
known. Since the masses are known and the Kinetic
energy has been determined, the period may be deduced.

The formal requiremerits of the deflection curve are
that it must sattisfy the end conditions and that in
between these end conditions, it must coincide with the
actua) dynamic deflection curve. Rayleigh (Rayleigh,
1945) has shown that the fundamental natural freque-
ncy as calculated from the assumed shape of a dynamic
‘deflection curve of a system, will be equal to or higher
than the system’s true natural fréguency.

Static deflection curve has got a wide application
for this purpose. This is the deflection that the system
would undergo under static condition if the gravity
action is supposed to be acting on the masses of the
system.

Better approximations in calculating the fundamen-
tal frequency and also the frequencies of higher modes
of vibration can be obtained by *“Ritz’s method” which
is a further development of Rayleigh’s method (Ritz,
1911). ' In using this method, the equation of the defie-
ction curve representing the mode of vibration isto
be taken with several parameters, the magnitudes of
which should be chosen in such a manner as to reduce
to a minimum the frequency of vibration:

To apply Ritz’s method in calculating the frequency
f of the fundamental type of vibration, the first step is to
choose & suitable ex'pression for the deflection curve, Let
Q: (%), Q; (%), be a series of function satisfying the end

. conditions and suitable for rep esentation of y. Then

y=2a; Q (X) + 2, Q (x) + 3 Qs (x) +
represents suitable deflection curve of the vibrating
system. Taking a finite number of terms in this expre-
ssion means superimposition of certain limitation on the

_possible shapes of the deflection  curve and due to this

fact the calculated frequency is usually higher than the
exact value of this frequency. In order to obtain the
approximation . as close as possible, Ritz proposed to
choose the coefficients a,; @y, @83... 0 as to make the
frequency a minimum. Thus, by equating  to zero the
partial derivative of the expression for frequency with
respect t0.a,, a system of equations homogeneous and
linear in a,, 4, a3 ... is obtaned, the number of which
is equal to the number of coefficients a,, a, as ... . Such
a system of equations can yield for a,, a,, as ... solution
different from zero only if the determinant of these equ-
ations.is equal to zero. This condition brings us to the
“frequency equations” from which the frequencies of
the various modes of vibration can be calculated.

If a composite system can be. split up into several
isolated systems, we can get a lower limit to the freque-
ncy of the composite system as compared with an upper
limit given by the Rayleigh approximation. This exten-
sion of Rayleigh’s principle is ‘due to Southwell and

Dunkerley. In the first case, if the composite system

is such that it is possible to express the total Kinetic

energy in the form of one integral while the potential
energy remains the sum of several integrals or terms,
then the sum of the squares of the true isolated 'freque-
ncies would be either less than or equal to the square of
the true frequency of the composite system (Southwell
1941). In the second case, where the potential energy is
contained in one term and the Kinetic energy is
contributed by various inertia elements, the sum of the
squares .of the reciprocals of the isolated frequencies
furnishes an upper limit of 1/f2 and consequently a lower
limit of f2, i.c. the square of the true requency of the
composite system (Dunkerley, 1894). The true funda-
mental frequency is obtained from the higher limit given
by a Rayleigh approximation and the lower limit given
by a Southwell-Dunkerley approximation.

Application to Building frames :
The dynamic characteristic of a. 10-storey reinfor-



Vibration Analysis of Structures .9

ced concrete building frame is obtained by applying the
energy method. The frame forms a part of -an R.C.C.
framed structure and has been designed by the author
for Dead load, Live load, and earthquake force of 20 %
g using the standard code of practice given by the
Indian Standard specification. The frame consists of
two bays of 25’ each. The floor heights have been kept
as 12’-0”. The frames have been placed 12'- 0" centre

to centre.

In this problem, as before, the important part is to
determine the characteristic deflection curve. To obtain
the deflection curve and the ‘dynamic forces which pro-
‘duce the characteristic deflection curve, a process called
e “Method of Dynamic Convergence” is employed.
This method is due to J.E. Goldberg and is similar to
Stodola-Vianello method (Bleich, 1950).

Determination of the Deflection Curve: .

Considering the bent or frame as a whole, it is
clear that the shape of the deflected structure, i.c. the
characteristic shape of the deflection curve of the vibra«
ting structure, is determined by the forces exerted upon
the structure by the oscillation of the various particles
or masses, these forces being proportional to the pro-
ducts of these masses times their respective amplitudes.

In determining the shape of the deflection curve to
which the structure oscillates under free vibration, use
is made of physical fact that, irregular though the’
forces may be which initially disturb the structure from
its figure of rest, the structure secks immediately to
adjust its figure to the natural deflection curve of free

oscillation and with each succeeding oscillation appro-

aches the configuration of the natural curve more closely
until, finally, the natural curve is accurately matched
and the previous adjusting oscillations are succeeded by
This fact may be proved

We may, therefore de-

self-sustaining free vibration.

experimentally or analytically.
termine the shape of the natural curve by producing
analytically a chain of successive circumstances closely
resembling the successve aspects of the ‘structure during
its transition from the irregular ngure ‘induced by the

initial disturbance to the final detlection curve of free

oscillation.

_ Thus we may begin by assuming an initial deflection
curve for the disturbed structure which, for practical
reasons, should be as correct an estimate of the final
free oscillation curve as we can make conveniently. In
the absence of specific data on the exact shape of the
free oscillation curve, it would be convenient to assume
some simple curve for the initial aspect of the disturbed
and deflected structure as for example, a straight line
variation of deflection with height.

For the sake of simplicity and convenience in the
consideration of the specific case of building frames, it
will be assumed that the masses of all the bodies
and elements which make up the mass of a storey act
as a single mass, concentrated at the level of the floor
system. y

The force exerted by a mass, m, moving with
simple Harmonic motion is, at the limit of its deflection

Force = CmA @
wharein C is a constant. which applies generally to all
masses of the system. A form somewhat more conveni-
ent for our purpose is obtained by transcribing equation
(4

Relative force = mA (5 ‘

Assummg that eachmass has exerted a relative
force equal to mass times its respective initial displace-
ments, the first adjusted deflection curve is obtained.
for the structure under the action of this group of
assumed forces by the use of the following slope-
Deflection formulae for the diflections of building frames
under transverse loads. Each formula is applied, in
turn, to each storey of the bent to obtain the adjusted
deflection curve. ‘ ‘

6. = hi‘li_l\_d_(l_ (6)
n 123 Kg n f
M, 6 +6
Ry =TIt T2 - O
Where |
= 2 EI/L = Stiffness of column
Kg = Stiffness of girder
= " Shear force x Storey height

M

i

‘Moment acting ata joint
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Angular rotation at a joint

Slope at any storey from the
vertical ‘
Relative diflection

Actual deflection

i

>U ®mo
il

The above expressions for G and Ry are approxi-
mate formulae. But they are simple and can be con-
veniently used for the present purpose. The frequency
or the time period is not appreciably changed due to
this approximation. Equations (6) and (7) are used
for all storeys above the first. For the first storey,
equations (6a) and (7a) are used assuming full restraint
against rotation at the bases of the first storey columns.

= Mi+M,
91 = 122 K81+ E K01 “en (6a)
- M 6,
Rl"‘ 62Kcl + 2 soe (73)
The actual linear deflections are given by
Dn = (Ry) (hn) voo w  (8)
An == — 2'1' Df. see : Yy (9)’
1=1

~ On the basis of the first adjusted deﬁection;cu‘rv‘e or
transition curve thus determined, a new set of relative
forces is computed by means of equation (5). Again
using ¢quation (6) to (9), a second adjusted deflection
curve is obtained. The procedure is repeated until a
deflection curve of the desired accuraey is obtained, i.e.,
until the free oscillation curve is determined with the
desired degree of accuracy. The degree of accuracy
may be tested by co'mpaiison of the successive deflection
curves. '

Determination of the period of vibration :
 Having definitely determined the deflection curve

. to which the freely oscillating structure deflects and,
incidentally, having determined the forces at each storey
which have induced this deflection, it now becomes
possible to deduce a value for the natural period of
vibration, At the instant the structure has reached the
end of its swing, i.e., it is fully deflected, the instantaneous
velocity of each particle is zero. -The total energy of
the system is, therefore, entirely potential at that instant

and is equal to the work done upon the structure by the
decelerating particles or, - what amounts to the sameg

thing, by the relative forces previously determined.

Again, at the instant of passing through its figure of
rest or normal static 'position, the entire energy of the

‘structure is Kinetic and is equal to the summation of

the Kinetic energies of the individual particles or masses
of the system. Neglecting the internal losses due to
fric?ion and other losses of similar nature, these two
‘quantities of energy must be equal by the law of conset-
vation of energe.

Total work=7%, (average force xA\)=3, (Ezé- 10y

where, the F and A values used are the accepted final
and correct values.

2 :
Total Kinetic Energy=z[%—(2—7fr‘é) ] . (11)

Equating (10) and (11) and solving for T gives
| 2p [EMA?) |

5 (FA)
An alterative formula, taking into account the

motion of only a single mass, may be obtained as
T = o [BA - (13)

Being simpler than equation (12) and entirely satisfactory
for normal use, equation (13) is particularly useful as a
means of checking. Equation (12), however, is -more
easily modified for other than the normal motions and
has the further capacity of minimizing irregularities and
the errors resulting thereform,

T = . (12)

Applying the above equations, the natural period yf
vibration of the 10-storey reinforced concrete frame,
already described, is determined analytically, A dimen-
sioned sketch of the frame is given in Fig. (1), on which
the moments of inertia (I) of the external and internal
columns and of the girders are shown. The figures
within bracket are corresponding values of K=2EI/L.‘
Data and calculations are tabulated, all elements of the
calculations being tabulated progressively in the order
in which they are computed. The calculations for the
fifth st(;rey, whicn is typical, are carried out in detail
below. The items are numbered in accordance with the
numbering of the column heading of the table and will
serve to explain each step of the procedure. o

(1) K¢=2EI/L for each column of the designnated
storey; Tabulated stiffness values are in units of 10%b-
ft. At the fifth storey the stiffness of the two.exterior.
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columns is 77.5 (x10%) Ib. ft. and that of the interior
column is 149 (x10%) Ib, ft.

ALLGIRDERS Ka - 60°5 xICF Ibft,

922 15450|35¢)  feI'l)
10210 215801499 (23¢)
215800 42800(99) {499
21500 4260099) @99}
33500 64,400/(149) \(77'5)2'
335000 64400(149) 79
37900 72600(682) |67
52000 93600(23)  [122)
s9g00| 124g00l28® (p®)
664000 143,300\(332) | 1537
| k—z:s'—#—z 55— |
ALL GIRDERS I = .54.500 IN?
~ Fig. 1 .

(2) For the two exterior and one interior columns
of the fifth storey, 6 3 Ke5 = 6X(2X 77.5 + 149) =
1824 (x 10%) Ib, ft. '
(3) The stiffness of each girder of the frame is
Kg = 60.5 x 10°1b. ft. '
Therefore, for the two girders at each storey
12 5Kg = 12 x 2 X 60.5 = 1452 (x 10%) 1b. ft.
Note that at the first storey,
123 Kg + 3 Keg = 1452 + 639 4 = 2091
is tabulated for subsequent use in equation (6a), whereas
_' the other itews in this column are for use in equation (6).

(4) Mass is the mass assumed to be concentrated
at the top, i.¢., at the level of the girders, of the storey
in question and includes the floor system, one half of
the columns, walls, partitions, both above and below the
floor level. The total weight of these elements divided
by the acceleration of gravity is the mass for that storey.

(5) For the initial estimate of the deflection curve,
a deflection of 1,00 ft. is assumed at the top of the frame

with the deflection at all other points in proportion to
their elevation. At the fifth storey = 1.00 X 60/120=
0.500 ft.

(6) By equation (5) the force assumed to be acting
at the top of the fifth storey is relative force =myAs ==
3790 x 0.500= 1895 Ibs. ’

(7) The external shear at the fifth storey is the

‘total of all the forces from the top of the frame down

to and including the force attop of the fifth storey.

Shear; = Shears + force 5 = 14,592 + 1895

= 16,487 lbs.

(8) M;==_Shearg X storey height=16,487 X 12=197,
844 1b. ft.

(9) By eqn. (6) 652 = (197844 + 175,104/2X
(1452) = 1284 Radian/10°

(10) Myf6 5 KeS =
Radian/10,

(11) By equation (M Rs =
1284 = 378.9 Radian/10°

(12) By equation (8) Dy =
4547 f1./10°

(13) The total deflection of any storey, by equation
(9), is the running total of item (12) from the first

storey upto and including the storey in question. Thus
= 15854 + 4547 = 20,401 ft/10°

(14) The deflections thus determined are scaled to
a value of 1.00 ft. at the tbp of the frame. Thus at the
fifth storey, relative deflection = 20401 /36219 = 0.563.
This item is useful chiefly in proéressively checking the
accuracy of the successive deflection curves.:

197,844/1824 = 108.5

108.5 4 1420 +

I

3789 x 12

(15) to (23) Comprise the second approximation or,
in other words, determine the shape of the second transi-
tion curve. They are a repetition of the processes of (6)
to (14). The set:ond'approximatioh corresponds very clo-
sely to the final free deflection curve and may, therefore,
be used for all ordinary purposes. However, for comp-
lete convergence and a final check on the accuracy of
the work, a third approximation is made.

(24).to (32) Comprise the third approximation
which is made in the same manner as the first and second
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STOREY

1 2 3 4 6 7 8 9 10
639.4 564.0 4750 3436 3040 3040 198.8 198.8 97.1 78.0 1 = Ke 108 1b. ft. -
3836 3384 2850 2062 1824 1824 1193 1193 583 468 2 65 Ke 10°10b. ft.
2091 1452 1452 1452 1452 1452 1452 1452 1452 1452 3 125 Kg 10°1b. ft,
3790 3790 3790 3790 3790 3790 3670 3670 3670 3510 4 Mass ’
: 0.100 0.200 - 0.300 0.400 0.500 0:600 0.700  0.800  0.900 1.000 5 A, assumed, ft,

- 379 758 1137 1516 1895 2274 2569 2936 3303 3510 6 Force 1bs.
20277 19898 19140 18003 16487 14592 12318 9749 6813 3510 7 Shear ibs.
243324 238776 229680 216036 197844 175104 147816 116988 81756 42120 8 M Db ft.
115.5 161 153.5 142 128.4 111.2 91.2 68.4 42.6 14.5 9 6/2 radians/108
63.5 70.5 80.5 104.7 108.5 96 124 98 140.4 90.1 10 M/6 3 Ko
179 347 395 400.2 378.9 335.6 326.4. 257.6 2514 147.2 11 R radians/10%
2148 4164 4740 4802 4547 4027 3917 3091 3017 1766 12 D ft./10°
2148 6312 11052 - 15854 20401 24428 28345 31436 34453 36219 13 AN fty108
0.059 0.174 0.305 0.438 0.563 0.675 0.782 0.869  0.950 1.000 14 Relative A
224 660 1156 1660 2135 2560 2870 3190 3485 . 3510 15 Force Ibs.
21450 21226 20566 19410 17750 15615 13055 10185 6995 3510 16 Shear 1bs
257400 254712 246792 232920 213000 187380 156660 122220 83940 42120 17 M b ft.
122.5 172.7 165 153.7 137.9 118.5 96 71 434 14.5 18 6/2 radians/108
67 75.3 86.5 113 116.9 102.7 131 102.3 144 90.1 19 M/6 5 K
189.5 370.5 4242  431.7 408.5 359.1 345.5 269.3 258.4 148 20 R radians/108
2274 4446 5090 5180 4902 4309 4146 3232 3101 1776 21 D fi/108
2274 6720 11810 16990 21892 26201 30347 33579 36680 38456 22 A fi./108
0.059  0.175 0.307 0441 0.570 0.682 0.789 0.873 0.954 1.000 23 Relative A
224 663 - 1163 1672 2160 2582 2895 3200 3495 3510 24 Force 1bs.
21564 21340 20677 19514 17842 15682 13100 10205 7005 3510 25 Shear lbs.
258768 256080 248124 234168 214104 188184 157200 122460 84060 42120 26 M Ib. fi.
123 173.5 166.1 154 1385 119 96.3 71.1 43.5 ' 14.5 27 8/2 radians/10%
67.4 75.7 87.2 113.5 117.5 103.2 1319 102.5 144.5 90.1 28 M/6 3 Ke
190.4- 372.2 426.8 433.6 410 360.7 347.2 269.9  259.1 148.1 29 R radians/108
2285 4466 5122 5203 4920 = 4328 4166 3239 3109 1777 30 D ft./i0®
2285 6751 11873 17076 21996 26324 30490 33729 36838 33615 31 A ft. /108
0.059 0.175 0.307 0.441 0.570 0.682  0.789 0.873 0.954 1.000 32 Relative A

Total . . .

24,141 0.02 0.17 0.54 1.11 1.83 2.63 3.42 4.18 4.99 5.25 33 m A?
623.33] 0.51 = 4.47 13.80 28.55 4750 68.00 8820 108.00 128.80 135.50 34 F A

-
I

Ts

B

21 \/24.14]623.33 = 2m +/.0387 = 2mx.1966 = 1.235 sec.
27 +/ (3790 % .021997)/2160 = 274/ 0386 = 27x.1964 = 1.235 secs.
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approximations. The perfect agreement between the
respective quantities of (23) and (32) may be noted.

(33) The next step in the procedure is'to compute
the energy quantities for use in equation (12). Using
~ the actual deflection listed in (31),"again taking the fifth

storey as an example, v
ms As? = 3790 x (0.021996)° = 1.83
s (mAZ)= 2414

(34) Correspondingly,

F; As = 2160 x .021996 = 47.50
and 3, (FA) = 623.33

The procedure to use in any case is briefly :

(a) A simple deflection curve is assumed, linear,
parabolic etc., depending upon the character of the
structure and the distribution of the masses.

(b) The dynamic forces are calculated by means of
equation (5).

(c) The deflections induced by the assumed dyna-
mic forces are determined using the appropriate deflec-
tion calculating method.

(d) The structure is passed through the necessary
number of cycles of dynamic convergence, to determine
the true free vibration deflection curve, by repeating
steps (b) and (¢)

(e) - The period is calculated by means of equation
(12)

CONCLUSION

(i) From the above discussion it may be seen that
the method of Dynamic convergence with Energy
principle can be used, with great advantage in the ana-
lysis of multistoreyed building frames for dynamic loa-
ding.

(i) Instead of the Dynamic convergence method,
the static deflection curve can also be used. But then
the dynamic character of the problem is not acknowled-
ged. Because, actually the dynamic forces which pro-

duce the deflection curve are proportional not simply to
the various masses butto the product of mass and
acceleration of each element of the structure.

(i) Compared to other methods of frequency
determination, Energy Method is more general and can
be made to suit any given condition by incorporating
different losses that may come in actual structures.
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