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ABSTRACT 

 The effects of differential motions on strength-reduction factors are described for the structures 
subjected to propagating horizontal, vertical, and rocking near-source, fault-normal, and fault-parallel 
strong-motion displacements. It is shown that the common design rules for selection of the strength-
reduction factors are not conservative for both fault-normal pulse and fault-parallel displacement. It is 
recommended that for the design of structures close to active faults the strength-reduction factors for all 
components of strong motion be constant and equal to 1/ 2(2 1)µ − , where µ  is ductility, for long periods, 
but only up to the collapse boundaries (where dynamic instability and gravity loads dominate). For the 
periods shorter than about 2 s, these strength-reduction factors should be further reduced by 30 to 50 
percent. 
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 In the engineering design of earthquake-resistant structures by pushover analyses (FEMA, 1997a, 
1997b, 2000; ATC, 1996), the design is governed by the target displacements determined from the 
inelastic response of the corresponding single-degree-of-freedom (SDOF) system. For the estimation of 
the maximum nonlinear response of a SDOF system, mu , in terms of the maximum linear response, 0u , it 
is necessary to specify a relation between mu and 0u . By defining the yield-strength reduction factor as 

0 /y yR u u= , where yu  is the yielding displacement of the SDOF-system-equivalent spring, and ductility 

as /m yu uµ = , for the same ground motion the ratio 0/mu u  becomes equal to / yRµ . Veletsos and 
Newmark (1960) were among the first to show that (i) for a long-period SDOF system, when its natural 
period nT becomes very long, 0/mu u tends to 1, and yR  approaches µ  (equal-deformation rule); (ii) for 

the response amplitudes governed mainly by the peak excitation velocities, 0/mu u  can be approximated 

by / 2 1µ µ −  and yR  by 2 1µ −  (equal-strain-energy rule); and (iii) for a high-frequency (stiff) 

system when ~ 0nT , ~ 1yR . 

 Departures from these “equal-energy and equal-displacement rules” were first noted by Riddell and 
Newmark (1979), and more recently by Cuesta and Aschheim (2001) and Mylonakis and Voyagaki 
(2006). For the model we study in this paper, of the rigid mass of length L, which experiences two 
translations and one rotation, as would a three-degree-of-freedom (3DOF) system when excited by 
propagating horizontal, vertical, and rocking ground motions, the classical equal-energy and equal-
displacement rules for SDOF systems will not apply. For convenience and comparison with numerous 
papers written on this subject, we will nevertheless refer to these classical equal-energy and equal-
displacement rules in the discussion of the results for our system. 
 With a gradual increase in the number of recorded strong-motion accelerograms (Trifunac and 
Todorovska, 2001), the researchers started to improve these rules to reflect the trends observed in the 
responses to the recorded data (Veletsos et al., 1965; Veletsos and Vann, 1971; Chopra and 
Chintanapakdee, 2001; Riddell et al., 2002) for different site conditions and ductility factors (Miranda, 
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1991; Ruiz-Garcia and Miranda, 2006), for rupture distance and earthquake magnitude (Miranda, 2000), 
and for fault-normal, near-field records in the zone affected by directivity (Baez and Miranda, 2000; 
MacRae et al., 2001). Ruiz-Garcia and Miranda (2003) noted that the average value of the ratio 0/mu u  is 
not much influenced by the recording site classification, by earthquake magnitude when 0 / 4yu u < , or 
by the rupture distance. Tiwari and Gupta (2000) and Chakraborti and Gupta (2005) presented 
comprehensive regression models based on large data-sets and showed clear dependence of the strength-
reduction factors on magnitude, predominant period, duration of strong motion, and geologic site 
conditions. Chopra and Chintanapakdee (2004) investigated the variations of inelastic deformation ratio 
with moment magnitude, fault-to-station distance, and site conditions for far-field and near-field recorded 
strong ground motions. Jalali and Trifunac (2008) found strong dependence of yR  versus nT  on the 
magnitude of an earthquake for the response of a SDOF system to motions at the earthquake source. They 
showed that for synchronous, horizontal near-source ground motions, the classical design curves are 
conservative for fault-normal pulse but that for fault-parallel displacements the common design rules are 
not conservative. They recommended that for designs near faults the strength-reduction factors for all 
components of synchronous motion should be constant for all periods and equal to 1/ 2(2 1) .µ −  For 
differential, horizontal near-source ground motions, they recommended that the strength-reduction factors 
for all components of motion should be constant for long periods and equal to 1/ 2(2 1)µ − , while for the 
periods shorter than about 1 s these strength-reduction factors should be further reduced by 30 to 40 
percent (Jalali et al., 2007). 
 The effects of spatial variations of motion at multiple supports of structures may be neglected in 
many design analyses. However, when the distance between the multiple support points is large (e.g., for 
bridges, dams, tunnels, long buildings), the effects of differential motions become important and should 
be considered (Bogdanoff et al., 1965). Spatial and temporal stochastic representations of strong 
earthquake motion have been investigated (Loh et al., 1982; Harichandran and Vanmarcke, 1986; Hao, 
1989). Differential motion effects have been studied for the response of beams (Harichandran and Wang, 
1988, 1990; Zerva, 1991), bridges (Kashefi and Trifunac, 1986; Perotti, 1990; Hyun et al., 1992), simple 
models of three-dimensional structures (Hao, 1991), long buildings (Todorovska and Lee, 1989; 
Todorovska and Trifunac, 1989, 1990a, 1990b), and dams (Kojic and Trifunac, 1991a, 1991b; Kojic et 
al., 1988). Okubo et al. (1984) were among the first to measure and interpret finite ground strains of 
recorded earthquake motions for plan dimensions representative of the intermediate and large buildings. 
They showed that, for short-period (stiff) structures, finite ground strains lead to increased base shears. 
Zembaty and Krenk (1993, 1994) studied the same model using random vibration-based shear force 
response spectrum. 

 Simple analyses of two-dimensional models of long buildings suggest that when 410a λ −< , where a 
is the wave amplitude and λ  is the corresponding wavelength, the wave-propagation effects on the 
response of simple structures can be neglected (Todorovska and Trifunac, 1990b). For shorter waves, but 
those still longer than the characteristic dimensions of the structure, Trifunac and Todorovska (1997) and 
Trifunac and Gicev (2006) showed that the common response spectrum method for synchronous ground 
motions can be extended to make it applicable for the earthquake response analyses of extended structures 
experiencing differential in-plane and out-of-plane ground motions. 
 The purpose of this paper is to describe the effects of differential motion on the strength-reduction 
factors of a simple 3DOF structure subjected to the horizontal, vertical, and rocking components of near-
source ground motions and to evaluate the validity of the classical strength-reduction factors for such 
excitations. Analyses of the consequences of the differences in ground motion at structural supports, 
caused by non-uniform soil properties, soil-structure interaction, and lateral spreading, for example, are 
beyond the scope of this paper. 
 Together with several previous studies of the effects of differential strong motion on the response of 
simple structures (Trifunac and Todorovska, 1997; Trifunac and Gicev, 2006), and of how the strength-
reduction factors are affected by the proximity to the earthquake fault (Jalali and Trifunac, 2008; Jalali et 
al., 2007), this paper also aims to explore how the classical response spectrum method might be extended 
to apply for physical conditions that are well beyond its original formulation. The original response 
spectrum method (Biot, 1932, 1933, 1934) has been formulated using a vibrational solution of the 
differential equation of a SDOF system, for excitation by a synchronous (at one point) and only horizontal 
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(one component) representation of the ground motion. The role of the simultaneous action by all six 
components of ground motion (three translations and three rotations) is still rarely considered today in 
engineering design (Trifunac, 2006), even though it has been 75 years since the response spectrum 
method was formulated and about 40 years since it became the principal tool in engineering design 
(Trifunac, 2003). Because the response spectrum method has become an essential part of engineering 
design and of the description process of how future strong motion should be specified for a broad range of 
applications (Todorovska et al., 1995), we hope that the present work will help in further understanding 
and extension of its limits of applicability. 

THE MODEL 

 The nature of relative motion of individual column foundations or of the entire foundation system 
depends on the type of foundation, the characteristics of the soil surrounding the foundation, the type of 
incident waves, and on the direction of wave arrival, such that at the base of each column the motion has 
six degrees of freedom. In this paper we consider only the in-plane horizontal, vertical, and rocking 
components of the motion of column foundations, and the analysis will be performed for the structures on 
isolated foundations only. We assume that the structure is near the fault and that the longitudinal axis of 
the structure (X axis) coincides with the radial direction (r axis) of the propagation of waves from the 
earthquake source so that the displacements at the base of columns are different as a result of the wave 
passage. We suppose that excitations at the piers have the same amplitude with different phases. The 
phase difference (or time delay) will depend upon the distance between piers and the horizontal phase 
velocity of the incident waves. 
 The simple model we consider is described in Figures 1(a), 1(b), and 1(c). It represents a one-story 
structure consisting of a rigid mass m with length L and supported by two rigid massless columns with 
height h, which are connected at the top to the mass and at the bottom to the ground by rotational springs 
(see Figure 1(b)). The stiffness of the springs, kφ , is assumed to be elastic-plastic, as shown in Figure 1(a), 
without hardening. The massless columns are connected to the ground and to the rigid mass by rotational 
dashpots, cφ , providing a fraction of critical damping equal to 5 percent. Rotation of the columns, ,iφ  i = 
1, 2, which is assumed not to be small, leads us to consider the geometric nonlinearity. The mass is acted 
upon by the acceleration due to gravity, g, and is excited by the differential horizontal, vertical, and 
rocking ground motions, ,

igu  ,
igv  and ,

igθ  i = 1, 2 (see Figure 1c) at the two bases such that 

 
2 1 2 1 2 1
( ) ( ) ; ( ) ( ) ; ( ) ( ) ;g g g g g g xu t u t v t v t t t L Cτ τ θ θ τ τ= − = − = − =  (1) 

with τ  being the time delay between the motions at the two piers and xC  being the horizontal phase 
velocity of the incident waves. The functional forms of ,

igu  ,
igv  and 

igθ  are defined by the near-source 

ground motions Fd  and Nd , which are described in the next section. The governing differential equation 
for the system in Figures 1(b) and 1(c) is then  
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Fig. 1 (a) Force-displacement (moment-rotation) relationship for bilinear spring; (b) Relative 

responses of the system excited by the differential ground motions, 
1
,gu  

1
,gv  

1
,gθ  

2
,gu   

2 2
, ,g gv θ  at the base of its two columns 1 and 2 

 
Fig. 1(c)  The system deformed by the wave, propagating from left to right, with phase velocity 

xC , for the case of 
igv+ (“up” motion) 
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 In Equation (3), when 0τ = , nω  and ς  are the circular natural frequency and damping ratio of the 
equivalent SDOF system, and ( )φΦ  is a nonlinear function of the type described in Figure 1(a). For 

0,τ ≠  the mass with length L has three degrees of freedom (horizontal and vertical translations of ,G  
and rotation ;Gθ  see Figures 1(b) and 1(c)). 

NEAR-SOURCE GROUND MOTION 

 In general, it is not possible to predict the detailed nature of the near-source ground motion and of the 
associated pulses due to irregular distribution of fault slip and because of non-uniform distribution of 
geologic rigidities surrounding the fault, non-uniform distribution of stress on the fault, and complex 
nonlinear processes that accompany the faulting (e.g., Trifunac, 1974; Trifunac and Udwadia, 1974; 
Mavroeidis et al., 2004). Thus, in this paper we adopt a simplified approach and model these motions 
using smooth pulses that have correct average amplitudes and durations and that have been compared to 
and calibrated against the observed fault slip and the recorded strong motions in terms of their peak 
amplitudes in time and their spectral content (Trifunac, 1993; Trifunac and Todorovska, 1994). 

 
Fig. 2 Fault parallel, ( )Nd t , and fault-normal (pulse), ( )Fd t , displacements adopted to 

represent the near-source motions in this study 

 Figure 2 shows schematically a plan view of the vertical strike-slip fault and two characteristic simple 
motions, Nd  and Fd , which describe the fault-parallel displacement and fault-normal pulse. For 
excitation by the fault-normal pulse, we choose (see Figure 2 (center); Trifunac, 1993) 

 ( ) Ft
F Fd t A te α−=  (4) 

where the typical values of FA  and Fα  for different earthquake magnitudes are shown in Table 1 
(Trifunac, 1993). Because the recorded strong-motion data are abundant only up to about M = 6.5, we 
place the values of Fα  and FA , for M = 7 and 8, in Tables 1 and 2 in the parentheses to emphasize that 
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these are based on extrapolation. For the near-source permanent displacement, we consider (see Figure 2 
(bottom)) 

 ( ) 1
2

N

t
N

N
Ad t e τ

− 
= −  

 
 (5) 

The values of NA  and Nτ  for different earthquake magnitudes are shown in Table 2 (Trifunac, 1993). 

 The amplitudes of Fd  and Nd  have been studied in many regression analyses of recorded peak 
displacements at various distances from the fault and in terms of the observed surface expressions of fault 
slip. In seismological papers the Nd  amplitudes are traditionally presented in terms of the average 
dislocation amplitudes ,u  which are related to Nd  as 2 Nu d=  (see Figure 2 (top)). Figure 3 summarizes 
the trends of average dislocation amplitudes, 2 Nu d= , versus magnitude M. Average dislocation is the 
value of dislocation amplitudes averaged over the fault surface and is the quantity used in the spectral 
interpretations of near-field motions and of the body wave amplitudes in the far field. Different symbols 
in Figure 3 show the results extracted from the studies of selected earthquakes (Trifunac, 1972a, 1972b; 
Fletcher et al., 1984). The dashed line shows the amplitudes of ,max2 Nd  as used in this paper (see      
Table 2). It is seen that the agreement is very good. 

 
Fig. 3 Comparison of the average dislocation amplitudes on the fault, ,max2 ,Nu d=  evaluated in 

several spectral analyses of the recorded strong ground motion (different symbols), with 
the amplitudes of ,maxNd  (Table 2), adopted for scaling ( )Nd t  in this paper (dashed line) 

Table 1: Characteristics of Brune’s Pulse Displacement (Trifunac, 1993) 

Magnitude, M αF (s-1 A) F d(cm/s) F,max ,maxFd(cm) (cm/s) 
4 14.04 56.48 1.48 56.48 
5 7.90 151.61 7.06 151.61 
6 4.44 546.97 45.32 546.97 
7 (2.50) (860.34) (126.6) (860.34) 
8 (1.40) (1560.29) (410.0) (1560.29) 
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Table 2: Characteristics of Brune’s Near-Field Displacement (Trifunac, 1993) 

Magnitude, M Nτ  (s) NA  (cm) ,maxNd  (cm) ,maxNd (cm/s) 
4 0.55 4.9 2.45 4.45 
5 1.2 29.2 14.6 12.17 
6 1.8 245.5 122.75 68.19 
7 (3.0) (1288.0) (644.0) (214.7) 
8 (5.0) (4169.0) (2084.5) (416.9) 

 An important physical property of the Fd  and Nd  functions, as used in this paper, is their initial 

velocity. It can be shown that ~ /Fd σβ µ , where σ  is the effective stress (~ stress drop) on the fault 
surface, β  is the velocity of shear waves in the fault zone, and µ  is the rigidity of rocks surrounding the 

fault. For Nd  it can be shown that 00.5 /Nd C σβ µ= , at t = 0, where typical values of 0C  are 0.6, 0.65, 
1.00, 1.52, and 1.52 for M = 4, 5, 6, 7, and 8 (Trifunac, 1993, 1997). The largest peak velocity observed 
so far, 5 to 10 km above the fault, is 170 cm/s, which was recorded during the Northridge, California 
earthquake of 1994 (Trifunac et al., 1998). Because there are no strong-motion measurements of peak 
ground velocity at the fault surface, the peak velocities Fd  and Nd  can be evaluated only indirectly in 
terms of .σ  The accuracy of the stress estimates depends upon the assumptions and methods used in the 
interpretation of recorded strong-motion records and is typically about one order of magnitude. Therefore, 
in solving the above equations, for σ  we can use .max 0~ 2 /( )Nd Cσ µ β  (see the dotted lines in Figure 4) 

with .maxNd  as given in Table 2, and ,max~ /Fdσ µ β  (see the continuous lines in Figure 4) with ,maxFd  
as given in Table 1, to check their consistency with the other published estimates of .σ  Figure 4 shows 
this comparison for typical values of µ and .β  The scatter of the reported estimates of σ  is large, but 

the values of ,maxFd  and .maxNd  given in Tables 1 and 2 are consistent with the observed trends. 

 
Fig. 4 Comparison of the stress drop determined from the near-field recordings of strong 

motion (different symbols), with the stress drop associated with the values of Fd  (solid 

lines; Table 1) and Nd  (dotted lines; Table 2) used in this paper 
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 Amplitudes of the pseudo relative velocity (PSV) spectra of the linear response of the SDOF systems 
in the far-field can be viewed and scaled in three period ranges, where the PSV amplitudes are dominated 
by (1) peak ground acceleration (for short periods), (2) peak ground velocity (for intermediate periods), 
and (3) peak ground displacement (for long periods) (Veletsos et al., 1965). When the fault motions Fd  

and Nd  begin with a sudden jump in the ground velocity (caused by a sudden stress drop on the fault 
surface), this large initial velocity will dominate the spectral amplitudes, and for the short periods of the 
oscillator, the “acceleration-dominated” zone of the PSV amplitudes will disappear. This will result in 
essentially constant PSV amplitudes in the short-period range (Jalali et al., 2007). This effect of large 
initial velocities, Fd  and Nd , on the PSV spectral amplitudes in the short-period range is reminiscent of 
the effects of differential motions, particularly for the stiff structures, at soft soil sites, and for large plan 
dimensions. There, the peak strains in the soil (that are proportional to the peak ground velocity) lead to 
constant PSV spectral amplitudes at short periods (Trifunac and Todorovska, 1997; Trifunac and Gicev, 
2006). 

The presence of the motions resembling Nd  in the recorded velocities and displacements filtered by 
data processing can be noticed by a trained eye in numerous plots of processed strong-motion records.  
The frequency of the occurrence and the amplitudes of such pulses are larger for the motions recorded 
closer to the causative faults. For the assumed motions Fd  and Nd  in this paper there is a Dirac delta 
function for the accelerations at time zero. In the observed motions, because of wave propagation through 
the sediments and soil, this will correspond to large but not infinite accelerations. 
 Figure 5 (top) shows an example of the ground displacement, perpendicular to the fault, recorded 
during the Parkfield, California earthquake of 1966, about 3 km above and about 10 km south-east from 
the principal fault slip (Trifunac and Udwadia, 1974). This displacement, computed by double integration 
from the recorded and band-pass filtered accelerogram, is used here to illustrate an example of a near-
field (not near-fault) “pulse-like” ground motion, which may have left the fault surface as Fd  (shown in 
Figure 2 (middle)), but was subsequently attenuated and “filtered” along its 11 km long path between the 
south-eastern end of the fault slip and the recording station. Figure 5 (bottom) shows the ground 
displacement recorded several kilometers above the fault, which slipped during the San Fernando, 
California earthquake of 1971. This displacement was also band-pass filtered by the routine data 
processing methods, and therefore does not contain periods of motion longer than 15 s and shorter than 
0.04 s. However, in spite of the band-pass filtering, it suggests two episodes of permanent ground 
displacements, starting near 2.5 and 6 s. Further examples of how Nd  for this earthquake may have 
appeared in the near-field can be found in Figures 6 and 10 of Trifunac (1974), which are based on 
synthetic computation of the fault slip during the San Fernando earthquake of 1971. The displacements 
shown in Figure 5 are examples of the recorded near-field (but not near-fault, or fault) motions, which 
lend support to our choice of the simple fault displacement functions, Fd  and Nd . 

 The functions Fd  and Nd  model the displacement time histories in the fault-normal and fault-

parallel directions. For the vertical strike-slip faults, Fd  and Nd  will also represent strike-normal and 
strike-parallel motions along the surface expression of the fault. For the dip-slip faults, a linear 
combination of Fd  and Nd  will contribute only to the vertical and strike-normal displacements on the 

ground surface. For a general fault orientation both Fd  and Nd  will contribute to the surface 
displacements, as determined by their projections onto horizontal and vertical motions on the ground 
surface (Mavroeidis and Papageorgiou, 2003). In the following, we will refer to Fd  and Nd  in the 
context of vertical strike-slip faults only. 
 In this paper, for simplicity, we assume that ( ) ( )

i ig gv t u t= ±  and that the functional form of ( )
igu t  is 

defined by Equations (4) and (5) for the fault-normal pulse and fault-parallel displacement, respectively. 
In the following plots, we label the results for 

igv+  with “up”, and those for 
igv− with “down”. The 

rocking component of the ground motion will be approximated by (Trifunac, 1982; Lee and Trifunac, 
1987) 
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where ( )
igv t  is the vertical velocity of the ground motion at the ith column. Of course, in a more accurate 

modeling, the ratio of 
igv  to 

igu  amplitudes will depend on the incident angle and the character of 

incident waves, while the associated rocking 
igθ  will be described by a superposition of rocking angles 

associated with the incident body and dispersed surface waves (Lee and Trifunac, 1987). The sensitivity 
studies of how the strength-reduction factors will depend on different incident angles is beyond the scope 
of this paper, and will be addressed in our future work. 

 
Fig. 5 Ground displacement, perpendicular to the fault strike, about 10 km south-east and 3 km 

above the south-eastern end of the fault slip on a vertical strike-slip fault, during the 
Parkfield, California, earthquake of 1966 (Trifunac and Udwadia, 1974) (top); Ground 
displacement recorded near the center and several kilometers above the thrust fault, 
which ruptured during the San Fernando, California, earthquake of 1971 (bottom) 

STRENGTH-REDUCTION FACTORS OF THE SYSTEM UNDER DIFFERENTIAL GROUND 
MOTIONS 

 The yield-strength reduction factor for the system subjected to a synchronous ground motion is yR  = 

0 0/ / ,y yf f u u=  where all of the quantities are defined as in Figure 1(a). In this paper, for the assumed 
model and because of the differential ground motions and rotation of the beam, relative rotation for the 
two columns at their top and bottom will be different. Therefore, we define the R-factor and ductility for 
each corner of the system instead of one factor for the whole system: at the top of the left column, 
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tl tl

y y
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φ
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at the bottom of the left column, 
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at the top of the right column,  
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and at the bottom of the right column, 
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In Equations (7)–(10), 10 ,M  10 ,M ′  20 ,M  and 20M ′  are the maximum linear moments, and 1( ),Gφ θ−  

1,ψ  2( ),Gφ θ−  and 2ψ  are the maximum nonlinear relative rotations at the four corners of the system. 
Further, yM  and yφ  are the yield moment and yield rotation of the columns, respectively. Iterations are 
required to compute the inelastic deformation ratio for a specified ductility factor because different values 
of yM  may lead to the same ductility. The convention is to choose the largest yM  (Veletsos and 
Newmark, 1964). 

RESPONSE OF THE SYSTEM SUBJECTED TO NEAR-SOURCE DIFFERENTIAL GROUND 
MOTIONS  

 In all calculations, we consider the actions of the horizontal, vertical, and rocking components of the 
ground motion, and the effects of the gravity force, dynamic instability, and geometric non-linearity. For 
the structure shown in Figures 1(b) and 1(c), we calculate the maximum linear and nonlinear relative 
rotations at the four corners of the system under downward ( )

igv− , radial, and rocking, and upward 

( )
igv+ , radial, and rocking near-source differential ground motions. The calculations are done 

corresponding to the earthquake magnitudes M = 5, 6, 7, and 8, for ductilities µ  = 2, 4, and 8, and for 
different time delays, τ  = 0.001, 0.01, 0.05, and 0.1 s. Then we plot yR  versus nT  for the four corners of 
the system. 
 Figure 6 illustrates typical results for yR  versus the oscillator period for near-source, fault-parallel 
displacement with downward vertical displacement, magnitude M = 8, ductility ratio of eight, and for 
time delay τ  = 0.05 s. It shows the results for the top-left, top-right, bottom-left, and bottom-right corners 
of the system, assuming wave propagation from left to right (see Figure 1(c)). For reference and for an 
easier comparison with the previously published results, we also plotted one of the oldest estimates of yR  
versus period, using piecewise straight lines (Jalali and Trifunac, 2008; Jalali et al., 2007; Chopra, 1995). 
The curve min( )yR  then shows the minimum values of yR  for the Nd  motion with 

igv− , M = 8, µ  = 8, 
and for τ  = 0.05. 
 Figures 7(a) and 7(b) illustrate the role of the vertical (up: 

igv+ , and down: )
igv−  components of the 

near-fault motion. The results are shown for yR  versus the oscillator period, with M = 5, 6, 7, and 8 and 

τ  = 0.001, for ( )Fd t  (i.e., the fault-normal pulse in Equation (4)), and ( )Nd t  (the fault-parallel 
displacement in Equation (5)). Again, for reference and for an easier comparison with the previous 
results, the old estimates of yR  versus the oscillator period are shown by the piecewise straight lines. For 

periods longer than 5 to 10 s, yR  curves approach the “collapse boundaries” (Jalali and Trifunac, 2008; 
Jalali et al., 2007). At or beyond these boundaries, the nonlinear system collapses due to the action of 
gravity loads. The results for τ  = 0.001 s correspond to the nearly vertical incidence of strong-motion 
waves or to the motions at a site with high seismic wave velocity, or both. These conditions are physically 
close to a situation in which the wave propagation effects are negligible, i.e., τ  = 0 or when the motions 
at the supports 1 and 2 (see Figure 1(c)) are equal (Jalali and Trifunac, 2008). For such small values of ,τ  
the R-factors at the four corners in our 3DOF model are approximately the same. Therefore, in        
Figures 7(a) and 7(b) we show the R-factor for the top-right (see solid line for the “down” and dashed line 
for the “up” motions) and bottom-right (see dotted line for the “down” and dash-dot line for the “up” 
motions) corners only. It can be seen from Figures 7(a) and 7(b) that the differences between the “up” and 
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“down” wave motions are more pronounced for the stiff structures and that those tend to decrease for the 
longer period structures. 
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Fig. 6 Example of the effects of the differential ground motion on the strength-reduction 

factors at the four corners of the system, which is subjected to the horizontal, vertical, 
and rocking components of the fault-parallel displacement ( )Nd t  for the downward 
vertical motion ( ),

igv−  M = 8, 8µ = , and for the delay at the right support, τ  = 0.05 s 
(the amplitudes of the piecewise straight representation of the classical yR  are shown for 
comparison; min( )yR  shows the smallest values of the R-factors, which for the set of 
conditions considered in this example are determined by the response at the top-left 
corner (for the periods shorter than 0.1 s), at the bottom-right corner (for the periods 
between 0.1 and 0.35 s), and at the top-right corner (for the periods longer than 0.35 s)) 

 With simultaneous consideration of the sign of the vertical motions and for larger delays (τ  = 0.01, 
0.05 and 0.1 s), variations of yR  versus the oscillator period increase and become complicated. This is 

because for different conditions of excitation (i.e., different amplitudes and durations of ( )Fd t , different 
amplitudes and rise time of ( )Nd t ) and larger ,τ  yR  amplitudes change abruptly from large to small 
values at different oscillator periods (e.g., as in Figure 6). Plotting all those rapid changes would clutter 
the figures and would not lead to simple trends, due to dependence of the results on many parameters. 
Since it is min( )yR  (as illustrated in Figure 6) versus the period of the oscillator that is of interest for 

design, in Figures 8(a), 8(b), 9(a), and 9(b) we show only min( )yR  versus period, for M = 5, 6, 7, and 8, 
µ  = 2, 4, and 8, and for τ  = 0.01, 0.05, and 0.1 s. 

 As can be seen from Figure 7, for small time delay (τ  = 0.01) and for very high frequencies (i.e., the 
acceleration-sensitive region), the R-factors of the system tend to the asymptotes with amplitudes equal to 

1 2(2 1)µ − , which are the consequence of strong initial velocity associated with a sudden onset of near-
source ground motion (Jalali and Trifunac, 2008; Jalali et al., 2007). For long periods (i.e., the 
displacement-sensitive region), the R-factors of the system at first start to tend towards the asymptotic 
values for the SDOF system, i.e., equal to ,µ  but then decrease below the values for which the collapse 
occurs because of the destabilizing effect of gravity. Thus, for 0τ →  the classical design curves are 
approximately conservative for the fault-normal pulse (see Figure 7(a)). However, they are not 
conservative for the fault-parallel displacement (see Figure 7(b)). 
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Fig. 7(a) An example of the effects of the differential ground motions on the strength-reduction 

factors at the corners of the system shown in Figure 1(b), which is subjected to the 
horizontal, vertical, and rocking components of the fault-normal pulse ( ),Fd t  for the 
“down” (

igv− ) and “up” (
igv+ ) vertical components, M = 5, 6, 7, and 8, µ =  2, 4, and 

8, and for the delay time τ  = 0.001 s (for this ,τ  the R-factors for the left and right 
columns are approximately same) 
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Fig. 7(b)  Same as in Figure 7(a), but for ( )Nd t  



ISET Journal of Earthquake Technology, March 2007 299 
 

 

 
Fig. 8(a) Examples of min( )yR  versus system period for the excitation by the fault-normal pulse 

( ),Fd t  for M = 5 and 6, µ  = 2, 4, and 8, and for τ  = 0.01, 0.05, and 0.1 s (classical 
piecewise straight approximation of yR  and amplitudes equal to 1/ 2(2 1)µ −  are shown 
for comparison) 

 
Fig. 8(b)  Same as in Figure 8(a), but for M = 7 and 8 



300 Strength-Reduction Factors for Structures Subjected to Near-Source Differential Strong Ground 
Motions  

 

 

 
Fig. 9(a)  Same as in Figure 8(a), but for ( )Nd t  

 
Fig. 9(b)  Same as in Figure 9(a), but for M = 7 and 8 

 With increasing time delay, the R-factors at the four corners of the system become very different. 
From Figures 8(a), 8(b), 9(a), and 9(b), it can be seen that for the fault-normal pulse with increasing time 
delay, the R-factors of the system fall below the classical design curves for the periods between 0.1 and 
2.0 s. For the fault-parallel displacement with increasing time delay, the R-factors of the system fall even 
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below the value of 1 2(2 1)µ −  by 30 to 50 percent for most periods, and for the cases studied in this 
paper, mainly for the periods between 0.1 and 2.0 s. 

CONCLUSIONS 

 We have illustrated the effects of differential motion on the strength-reduction factors, yR  versus ,nT  
for a simple 3DOF system subjected to propagating horizontal, vertical, and rocking components of near-
source ground motions. For small time delays and for very-high-frequency systems, the R-factors are 
dominated by the initial velocity of the ground motion and those tend to the amplitudes equal to 

1 2(2 1)µ −  (Jalali and Trifunac, 2008; Jalali et al., 2007). For τ  = 0, the classical design curves are 
approximately conservative for the fault-normal pulse, but they are not conservative for the fault-parallel 
displacement. With increasing time delay (in this paper we studied delays up to 0.1 s), the R-factors at the 
four corners of our model (see Figure 1(b)) become different and move below the classical design curves 
for the periods between 0.1 and 2.0 s for the fault-normal pulse, and essentially for all the periods for the 
fault-parallel displacements. 
 In view of these results, it is recommended that for design in the near-field, i.e., close to active faults, 
the strength-reduction factors for all the components of strong motion should be constant and equal to 

1 2(2 1)µ −  for long periods, but only up to the collapse boundaries where dynamic instability and gravity 
effects become dominant. For the periods shorter than about 2 s, these strength-reduction factors should 
be further reduced by 30 to 50 percent. 
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