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EARTHQUAKE RESPONSE OF HOMOGENEOUS EARTH DAMS USING
FINITE ELEMENT METHOD

S. S. Saini* and A. R. Chandrasekaran**

Synopsis

This paper presents a dynamic analysis of a homogeneous earth dam to actually
recorded strong ground motion. Finite element method has been used in the analysis.
Two finite element idealizations of the dam have been considered in the analysis and the
response compared. The natural frequencies and modes of vibration have been computed
by inverse iteration. Mode superposition method has been used to evaluate the dynamic
response. The response evaluted are dynamic displacements and - dynamic stresses. Static
stresses have also been computed as these form a major portion of the stress distribution

in earth dams. The effect of the vertical component of ground motion on the dynamic
response has also been investigated, -

Introduction

Earth dams usually form an important element of multipurpose projects like
hydroelectric, irrigation and flood control. The earthquake behaviour of earth dams is an
extremely important problem since many important dams are being built in regions of high
seismicity at the present time and others will be built in future. Thus, it is essential to
obtain some understanding of the response of earth dams to earthquake excitation in an
effort to explain their observed behaviour and to arrive at improved methods of design.

Very few studies have been reported on the dynamic analysis of earth dams. An
earth dam is a three dimensional continuous system which is highly indeterminate. To
attempt the problem, it is necessary to make some simplifying assumptions regarding their
behaviour. In all studies reported so far, the true three dimensional nature of the geometry
has been ignored. The problem has essentially been analysed by treating the earth dam as
a shear structure based on a beam type solution. The beam model is converted into a
lumped mass system and analysed!. The analysis, in a way, assumes that the stresses do
not vary along the width of the cross section of the dam. Also, with this analysis, it is not
possible to take into account the effect of variation of material and material properties as
is generally encountered in the core of earth dams. Such studies do not furnish adequate
information for design purposes. Due to lack of such technical data, the design is essen-
tially based on the experience gained from the past behaviour of dams during earthquakes.

Earth dams are huge structures and their dimensions are such that length to height
ratio is large. Further the width of a. earth dam is quite significant as compared to height.
In such cases, their behaviour will predominantly be two dimensional. Finite element
technique?® is more versatile for such analysis and has been used here. This paper
describes the application of the finite element technique for earthquake response of
homogeneous earth dams. The study has been illustrated with the help of an example of
an earth dam 300 feet high. Two finite element idealizations of the earth dam section
have been considered and the response compared. The response evaluated are dynamic
displacements and dynamic stresses. Static stresses have also been computed as these form
a major part of the stress distribution in earth dams.
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To determine the effect of the vertical component of ground motion, the response have
been evaluated for horizontal ground motion alone as well as for the combined effect of hoir-
zontal and vertical components of ground motion. The response to the vertical component
of ground motion alone has not been evaluated because such a ground motion will rarely
occur. The normal practice in the design of earth dams is to take the seismic coefficient
in the vertical direction equal to 50%, of that in the horizontal direction. So, accordingly,
in one case, the vertical component of ground motion has been taken as 50% of the
horizontal component of ground motion and in the other case, the actually recorded
vertical component of ground motion has been considered.

~ This study indicates that the use of a combination of rectangular and triangular
elements in the structural idealization is better because for the same order of accuracy, the
number of degree of freedom is much less when a combination of rectangular and triangular
elements is employed than when triangular elements alone are used. The effect of the
vertical component of ground motion on the horizontal dynamic displacements and dynamic
stresses is small but the eifect on the vertical dynamic displacements is large.

Finite Element Method ,

The finite element method of analysis is a powerful structural analysis technique.
The method is well known for static analysis®® but its application to vibration problems
has -been made only in a few cases(*5>%), In this method, the coitinuous system is idealized
by introducing finite elements thus converting it into a multiple degree freedom system.
In this investigation, it has been assumed that the dam is uniformly loaded along the length
so as to produce plane strain behaviour of the cross section. Further it has been assumed that
the material of the dam behaves linearly elastic. On the basis of these assumptions, it is..

possible to calculate the stiffness properties of the dam section which define nodal force
deflection relationships and can be represnted as(®.

R} = [K] {Z} - )

Where {R} is the vector of nodal point forces, {Z} is the vector of nodal point
displacements and [K] is the stiffness matrix. Here, each nodal point has been assumed to
possess two degrees of freedom. Support conditions may be applied by eliminating the
rows and columns corresponding to nodal points which impose displacement constraints,

The stresses {0} at the nodal points can be compdted as®
{o} = [S] {Z} ¥)

Where [S] is the stress transformation matrix.

In addition to this, for dynamic analysis, the mass matrix for the idealized model of
the dam is needed. This may be defined in various ways including the consistant mass
matrix procedure”. However, it is convenient if the total mass of an element is assumed
to be concentrated equally at its various nodal points as this some what simplifies the
analysis as it includes only diagonal terms in the mass matrix. Thus in this investigation,
one-third of the mass of each triangular element and one-fourth of the mass of each

rectangular element has been assumed to be lumped at nodal point.

Dynamic Analysis

Using Finite elements, the dam structure is reduced to a model with multiple degree of

freedom. The equations of motion of such a system can be written using matrix
notation as :

[M] {2} + [C] {2} + [K] {Z} = {R()} 3)
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Where [M] is the mass matrix, [C] the viscous damping matrix, [K] th: stiffness
matrix {Z} the vector of nodal point displacements relative to base {R(t)} the load

vector caused by earthquake ground motion and dots define differentiation with respect to
time.

If it is assumed that the entire base section under the dam is subjected to the same
ground motion at any instant of time, then the load vector {R(t)} associated with the
ground acceleration caused by an earthquake can be written as

RO} = — (P %lt) — Py} Yol @
where, ‘
( M) 0 1
| O | (Ml l
| M, | | O |
o | | M, |
M, | | O | |
{Px} = < : ‘> and {Py} == { 1} (5
o l \
©o b
My | | O |
" O .J LMN J

Xq(t) and ¥¢(t) represent the horizontal and vertical components of grouad mation‘an.d' N
is the number of nodal points used in the structural idealization less support condition
Thus the equation of motion (3) can be written as :

IM] {Z} + [C] {2} + [K]{Z} = — {Px} Xe(t) — {Py} Ye(t) ©)

Equation (6) represents a set of second order differential equations which can be
solved numerically to compute dynamic respose. However, for the problem considered
here, the degree of freedom is large. Also, the contribution of the first few modes of
vibration is usually significant in the dynamic response and the contribution of higher
modes is small. So, in this investigation the dynamic response was evaluated using mode
superposition method. It was necessary first to determine the natural frequencies and
mode shapes. These can be determined from the case of free undamped vibration because

for small values of damping, damped natural frequency is approximalely equal to undamped
natural frequency.

Determination of Natural Frequencies and Mode Shapes:

The equation of motion for free undamped vibrations is

[M] {X} + [K] {X} =0 | (M
~ where {X} is the vector of absolute displacements.
The solution of Eq. 7 takes the form
{X} =a. e’ {$} | : ®)
where a = scalar of dimension L ‘

p = scalar of nimension T-*
t = time
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[ & ]
| 4 |
{¢} = a nondimensional vector {I- ooy
| Lin )
and i =4/
Substituting Eq. 8 into Eq. 7
— p*[M] {¢} + [K] {¢} =0
or [K]{¢} = p? [M] {¢} ®
which is a characteristic value problem, the solution of which will yield n distinct values of
p? where n = 2N. For each value of p;, there will be an-associated vector {¢}.

To obtain the solution of the characteristic value problem represented by Eq. 9, it
should first be transformed to the form of standard eigevalue problem represented by
[A] {Y} = X {Y}. Tt may be recalled here that [M] is a diagonal matrix. _

Let [M] = [H]T [H] ‘ (10)
where [H] is a diagonal matrix and the superscript ‘T’ indicates the transpose of matrix.
Since [H] is diagonal [H]' = [H]

Therefore [M] = [H] [H] , (11)

and [H] = [M}/2
Substituting Eq. 11 into Eq. 9

[K} {¢} = p* [H] [H] {#} (12)
Premultiply both sides by [H}* | o :
[HI7 [K] {¢} = p* [H] {¢} ‘ | (13)
or  [H][K][H][H] {¢} = p* [H] {#} , (14)
Let {Y} = [H] {¢} ‘
and - [A] = [H]? [K] [H]? (15)
Then Eq. (14) becomes | ' v
[A] (Y} = p*{Y} (16)

which is of the standard form, [A] {Y} = a {Y}.

Thus the eigenvalues obtained from Eq. (16) will be the true eigenvalues and the
true eigenvectors can be obtained as

{$} = [H] {Y} 1D

Method of Inverse Iteration : ‘
This is an iterative process and is based on the fact that if {Y} is an eigenvector
corresponding to an eigenvalue ) for the matrix [A], then {Y} and p = )‘—%-b are the corres-

ponding eigenvector and eignvalue for [A—b I]-'.

This follows by writing the defining equation
[A] {Y} = A {Y} as
[(A) - b@] {Y} = QA — b) {Y} (18)
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Then,
(&) — b O (V) = =5 0 (19)

: Thus if the eigenvalues of [A] are Ap Ageeeee an and Ar together with {Y,} are
desired, then any value of b sufficiently close to Ar will make | Ae—b | < | =D | if T
and Ar is not a multiple root. In the present case, [A] is a symmetric matrix and there are
no multiple roots. ~

Therefore p = 3\_‘—1_b is the dominant eigenvalue of [(A)—bD]*{Y}=w {Y}.
—

Matrix iteratior of BEq. (19) will yield {Yy} and p. Knowing p and b, Ay and hence Dr
can be obtained. To start the procedure, a close approximation to the fundamental
frequency can be estimated by Rayleigh’s method. In actual practice, it is not necessary
to carry out the actual inversion process [(A)—D (D]* and in this study, the iterative
scheme has been fcarried out using a special technique. The frequencies thus obtained are
the true frequencies and the actual mode shapes can be obtained as

{$3 = [HI"* {Yx} (20)

These mode shapes satisfy the following orthogonality relationship.

{‘151'}T M} {ps} = 0
r=£Ss (21)
{$}7 [K] {ds} = O

where r and s are two different modes of vibration,

Normal Coordinates

The coupled equations of motion (6) can be reduced to a set of uncoupled normal
equations using the orthogonality relationship given by Eq. 21. In order to transform the
nodal coordinates Z to the normal coordinates &, let

{Zy = [¢] {8 (22)

where [4] is a square matrix composed of modal vectors as columns and is given by

— ® @ L@ T (go )
¢?(1) ¢2.(2) 4,2.(11) \l Ezf“ }

[¢] = \ : : and {§£} = 4‘ T’ (23)
_ 4,,:,(1) 4,;(2) 4,;(:\) B \L E:i(t) J\

Substituting Eq. 22 in Eq. 6 and premultiplying throughout by [¢]T .

[61F [M] g1 (£} + (417 [C1 4] & + [617 (K1 4] {8}
— 41 (P} Ke () — [T (P} Ya(® (24)

Making use of orthogonality relationships, Eq. 21, it may be noted that
[6]' [M] [#], and [$]" [K] [¢] are diagonal matrices. If the damping is such that the same
transformation which diagonalises the mass and stiffness matrices, also diagonalises the
damping matrix, that is [$1F [C] [¢] isa diagonal matrix, then Eq. 24 could be simplified

and solved.
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Using the notation
{¢e}T [M] {¢s] = M*
{$}7 [K] {¢r} = ps? M*

{#37 [C] {$r} = 2 pr T M, ¥ (25)
iﬁ.}];/fffj} = Qg
{d’ﬂril?y} = Q,®

where € = Fraction of critical damping in rth mode of vibration.

Equation 24 can be written as 4 set of nnormal equations
& + 2pr L Er -+ pr? &= — Qx® Xg(t) — Qyi0 Y t)
r=1,2.... n (26)

Thus an n degree of freedom system represented by Eq. 6 has been reduced to n
single degree freedom systems represnted by Eq. 26 using a transformation given by Eq. 22.
It may be noted that either of the ground acceleration components can be considered
separately or they may be combined fo give the total effective force as ‘

RE(D) = — Qx® Xglt) — Qy® Yy(t) - @7
The solution of Eq. 26 can be written as
1
= ‘51; f Re*(z) €™Pr Lx(t=7) Sin p; (t-c) d= (28)
r 0 . :

where  par = pr 4/ 1—%;? = damped natural frequency.

. The displacemet relative to base of ith mass in the rth mode of vibration can be
written as ‘

. 't
Zyn) = gy -p—'; [ Re*(z) €7Pr & (t~7) Sin py, (t-1) ds ] (29)
r JO
or Zi® = ¢ (W), * " (30)
[t
where  (W)* = p(;l« L Re*(r) €7Pr &r (t-7) Sin py; (t~r) dr] (3D
r JOo

Hence, the displacements relative to base in the rth mode of vibration can be
expressed as

{Z} = {¢r} (W)r* (32)
The stresses at the nodal points in the rth mode of = vibration can be computed
using Eq. (2) as
(o) = [5] {Zjo»
= [S] {¢r} (W)e* |
{7}® = {Dy} (W),* (33)
where (D} = [S] {4}



Earthquake Response of Earth Dams : S.S. Saini and A.R. Chandrasekaran 31

The total displacement and stresses can be computed by making use of the principle
of superposition as :

n

(Z} = 3 (b} (W)e* (34)

r=1

r—1

Knowing normal and shear stresses, principal stresses can be computed using well
known relationships from Theory of Elasticity.

Specifications of the Example

The study has been illustrated with the help of an example. A homogeneous dam of
height 300 feet and symmetric triangular crossection with side slopes of 1.5 has been taken.
Following data has been taken for the material of the dam section :

Moduls of Elasticity of dam material E = 81,300 p.s.i.
Weight density of dam meterial p == 130 Ibs/cft.
Poisson’s ratio of dam material y = 0.45

I

These values are associated with a
shear wave propagation velocity of
Vs = 1000 ft/sec. and a longitudianal
wave propagation velocity of V, = 1700
ft/sec. The section of the dam taken
for the example is the same as used in
some of the previous investigations®’5°®),
In the present study, only homogeneous
dam has been analysed though the
analysis described in this paper is general
and can very conveniently take into
account the nonhomogeneity of the dam
material. In this investigation, two
finite element idealizations of the dam
section have been considered (Fig. 1)
and the response compared. In one case . -t

(Case~A), only triangular elements have 2 o

been used in the structural idealization : ts e , .
and in the other case (Case-B), a combi- % N NG e
nation of rectangular and triangular e oy \

elements has been used. Case A consists 5 S L 5 e i

of a 110 degree freedom system and ‘ ' 1 S
Case B consists of a 50 degree freedom & ™ 20 @ 3
system only. : Lo o 900" —-

|
rv' ' X “
CASE B _ IDEALIZATION USING COMBINATION OF RECTANGULAR
Discussion of Results AND TRIANGULAR ELEMENTS

Natural Frequencies Fig. 1. Finite Element Idealization of the Earth Dam

For the two finite element idealizations of the dam section considered, natural
frequencies of vibration and mode shapes have been determined by inverse iteration for
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the first fifteen modes of vibration. The natural frequency of vibration is given by :

v
P=c ¢ 35)
where p = undamped natural frequency in rad./sec.

cp = frequency coefficient ‘
V, = longitudinal wave propagation velocity in ft/sec.
H = height of dam in feet

The value of the frequency coefficients for the two cases have been presented in
Table 1. These coefficients can be used for homogeneous dams of any height H having
side slopes of 1.5. Considering the case of the dam 300 feet high with the material
properties given, }—}[I—’ works out to 5.67. Using this, the values of natural frequencies can
be calculated using Eq. 35 and these values are also presented in Table 1. It may be noted
from Table 1 that for Case~B, the frequencies in the various modes are somewhat lower than
those for Case-A. The amount of difference is quite small in the fundamental mode but
gradually increases in higher modes of vibration.

Table 1

Comparison of Frequencies

Freq. Values of Cp Values of p
No. Case~A Case-B Case-A Case-B
T | 136 1.35 771 7.67
2 2.21 2.14 12.51 12.16
3 2.57 2.38 14.58 13.48
4 3.40 3.04 19.29 17.22
5 3.54 3.20 20.09 18.15
6 4.07 3.58 53707 20.31
7 4.18 3.59 23.72 20.38
8 4.57 3.96 25.92 22.45
9 471 4.04 26.73 22.93
10 5.07 4.13 28.73 344
11 5.47 429 - 31.04 2434
12 5.53 4.50 31.33 25.54
13 5.70 4.63 32.34 26.23
14 5.93 4.68 33.60 26.51
15 6.02 4.84 34.14 27.43
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The first ten modes of vibration as
obtained for Case-B are shown in Fig. 2.
These mode shapes resemble those for
Case~A reported earlier®®. It may be
noted from figure 2 that for the symmetri-
cal homogeneous dam considered, there
are two basic types of vibration modes,
viz. antisymmetric and symmetric which will
give rise to antisymmetric and symmetric
stress distributions respectively. The anti-
symmetric modes will be excited by hori-
zontal ground motion only and symmetric
modes will de excited by vertical ground
motion only. It may be noted here that

with the present analysis, the dam can

have both horizontal and vertical displace-
ments even under horizontal excitation
alone unlike for the case of beam analysis
where horizontal excitation will cause
horizontal displacements only.

. Mo MODE &
e 5 = 2031 AADS/ SE/

———

oo e e - —

MODS .Y

MODE 19 v
0 233 ¢4 BADY./SEC

£1G 2(CONTD) . NATURAL FREQUENCIES AND MODES :OF
: ' “VIBRATION OF EARTH DAM (CASE-8)
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Table 2 .
Comparison of Mode Participation Factors
Nodal ( Along the Central Axis of Dam Nodal Along the Slope of the Dam
Point First Mode Second Mode Point First Mode Second Mode
No. |[Case-A Case-B| Case-A Case~-B No. | Case-A Case-B | Case—-A Case-B
1 1.651 1.580 0.877 ,0.869 1 1.651 1.580 0.877 0.869
3 1.513 1481 | 0.895 0.857 2 1.477  1.466 0.595 0.564
6 | 1254 1258 | 0732 0723 5 1.142 1151 | 0.078 0.006
10 0.880 0.882 0.448 0.450 8 0.718  0.725 |—0.066 —0.078
15 0.440 0.441 | 0.158 0.159 13 0.295 0.292 |-0.014 0.012

Mode Participation Factors

Mode participation factors for displacement are presented in Table 2 for the first
two modes of vibration for the two cases under consideration. The comparison has been
made along the central axis of the dam as well as along the slope of the dam. The djs-
placement in any mode of vibration will be given by mode participation factor multiplied
by spectral displacement in that mode of vibration. From Fig. 2; it is noted that the first
mode of vibration is an antisymmetric mode and will be excited by horizontal ground motion
only and the second mode is a symmetric mode and will be excited by vertical ground
motion only. In Table 2, are presented, the participation factors in the first mode, for
horizontal displacements due to horizontal vibrations and the participation factors in
the second mode, for vertical displacements due to vertical vibrations. 1In the first mode,
the participation factors for vertical displacements due horizontal vibrations and in the
second mode, participation factors fer herizontal displacements due to vertical vibrations -
are not presented as these are small for purposes of comparison. From Table 2, itis

noted that the participation factors for the two cases A and B compare quite well though
the number of degree of freedom in case B is much less than that in case A .-

Static Stresses

Static stresses form a major portion of the stress distribution in earth dams and
these have been obtained for the two cases under consideration. Principal stresses have
also been computed and are give by : ‘

Ogy == CS] . P H
o, = Cs3 . p H
0'519 = Cslg. P H (36)
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where o5, = major static principal stress
minor static principal stress
051 = Mmaximum static shear stress
cs; = coefficient for major static principal stress
¢, = coefficient.for minor static principal stress
Cs2 = coefficient for maximum static shear stress.

I

0'55

For the example considered, ¢ H = 270.83 Ibs/sq. in. Using this value, the
principal stresses can be evaluated and these are presented in Table 3*, for the two cases.
From the Table, it is noted that the stresses in the two cases are close to each other though
the number of degree of freedom in Case-B is much less than that in Case-A. Thus the
use of a combination of rectangular and triangular elements may be preferred in compa-
rison to the use of tringular elements only as this results in a considerable saving of
memory space and computation time. Further, it is noted form Table 3 that the static
stresses for the two cases are wholly compressive. The stresses are maximum at the base
and decrease towards the top of the dam. As regards the variation of stresses along the
width of the dam, the stresses are maximum along the central axis and decrease towards
the slopes and are minimum- at the slopes.

Dynamic Response

Dynamic response has been evaluated for the two cases A and B. The contribution
of the first fifteen modes of vibration has been considered. Damping has been considered
to be equal to 20% of critical damping in all the modes of vibration. The digitalized
ground motion data of El Centro earthquake of May 18, 1940 has been used. For the
horizontal ground motion, NS component has been taken. To study the combined effect
of the horizontal and vertical components of ground motion, in one case, the vertical
componet has been considerd to be 50%; of the horizontal component and in the other case,
the actually recorded data of the vertical component has been used. Results have been
obtained for the horizontal ground motion alone as well as for the combined effect of

horizontal and vertical components of ground motion. The response obtained are dynamic
displacements and dynamic stresses.

Dynamic Displacements

Dynamic displacements have been obtained for the two Cases A and B due to
horizontal ground motion alone and due to the combined effect of horizontal and vertical
components of ground motion and these are presented in Table 4. It may be noted from
the table that due to the horizontal ground motion alone, the maximum horizontal displace-
ment occurs at the top and is of the order of 3.0 inches and decreases towards the base.
These are maximum near the central axis of the dam and decrease towards the slopes.

The maximum vertical displacement is of the order of 0.15 inches and occurs near the top
of the dam.

Further it is noted from Table 4 that the combined effect of the horizontal and
vertical components of ground motion has little influence on the horizontal: displacements
in comparison to those obtained for the horizontal ground motion alone but the vertical
displacements are increased. The maximum vertical displacement is of the order of
0.60 inches when the vertical component is taken to be 50 per cent of the horizontal
component and is of the order of 0.25 inches when the actually reeorded data of the

* Comparison of static and dynamic response has been made at twenty two selected points as marked in

Fig. 1. (Case A and B). In this study, compressive stresses have been marked as positive and tensile
stresses as negative.
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TABLE 3*
Comparison of Static Stresses
Nodal Case-A Case-B
Point
No. o5y Oy Og1s ag; Ogy Os1z
1 13.19 14.25 51 30 18.06 8.91
2 3.66 33.58 14.98 6.17 29.87 11.86
3 6.50 32.74 13.14 12,76 40.08 13.65
4 3.66 33.58 14.98 6.17 29.87 11.86
5 517 32.39 13.62 9.10 30.90 10.91
6 14.92 81.68 33.39 10.37 84.85 37.24
7 5.17 23.39 13.62 9.10 30.90 10.91
8 11.67 42.11 15.22 14.92 40.19 12.65
9 27.76 65.84 19.04 25.92 63.02 18.55
10 46.45 129.19 41.38 41.06 131.84 45.39
11 27.76 65.84 13.04 25.92 63.02 18.55
12 11.67 42.11 15.22 14.92 40.19 12.65
13 13.03 63.16 25.05 13.97 63.56 24.78
14 66.87 125.37 29.25 65.03 125.07 30.01
15 101.78 174.52 36.35 94.01 175.88 40.92
16 66.87 125.37 29.25 65.03 125.07 30.01
17 13.03 63.16 25.05 13.97 63.56 24.78
18 8.77 52.08 21.64 0.00 56.20 28.09
19 96.77 163.61 33:; 93.44 158.38 32.47
20 152.50 201.77 24.65 157.03 195.67 19.31
21 96.77 163.61 3342 93.44 158.38 32.47
22 8.77 52.08 21.64 0.00 56.20 28.09

¥ Static Stresses presented are in p-s.i.
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TABLE 4*

Compariso of Dynamic Displacements Due to
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Nodal | Hors Ground Morton | iorytnd Vet Moton | Horz and ver Moton
I;)int' Case-A Case-B \ Case—-A Case-B Case~A Case-B
Tz oz |z 7y | 7.z I Z. Zy | Zx Zy | Zs 7y

1 296 0.00| 274 0.00| 2.96 0.59 | 274 0.60| 296 0.19| 274 023
2 258 0.15| 2.54 0.5 2.57 040 | 2.51 042 2.59 021| 255 0.24
3 2.67 0.00| 2.57 0.00| 2.67 0.5 | 2.57 0.57| 2.67 0.19| 2.57 022
4 2.58 0.15| 2.54 0.15| 2.59 0.46\" 2.57 048 | 2.57 0.21| 253 025
5 187 0.3 | 1.89 0.5| 1.98 0.22 | 2.01 0.27| 1.94 0.3 | 195 0.14
6 210 0.00 | 2.13 0.00] 2.10 0.47\ 2.13 0.46| 2.10 017 | 213 0.8
7 1.87 0.13| 1.89 0.15| 1.77 0.19 ‘1 1.83 0.18| 1.79 0.6 | 1.83 0.17
8 117 0.05| 1.23 0.08] 1.32 o.xzi 138 0.1 126 007| 1.28 0.09
9 134 0.09| 1.36 0.1 1.49 0.19\ 1.53 021 ] 1.44 03] 1.45 0.4
10 146 0.00| 1.50 0.00| 1.46 0.29 | 1.50 028 | 1.46 0.10 | 1.50 0.11
11 134 0.09| 1.36 0.11| 1.20 0.19 | 1.34 020 130 0.12| 136 0.14
12 117 005 | 123 008] 116 0.1 | 120 010 1.16 012| 123 007
13 050 002| 0.56 0.02] 0.56 0.03 | 0.57 0.03| 051 003| 0.55 003
14 0.71 006| 0.81 0.06| 0.81 009 | 0.85 0.09 | 077 0.08 | 0.81 0.08
15 079 000| 085 0.00| 079 0.2 | 0.85 0.10| 079 007| 085 0.04
16 071 0.06| 081 006| 0.74 0.12 | 0.83 0.2 | 0.72 0.07| 0.82 007
17 050 002 0.56 002! 0.47 0.02 | 0.56 0.03 | 0.0 0.02] 057 0.02

\

* 7¢ — Horizontal Displacement in inches.

zy — Vertical Displacement in inches.
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vertical component is used. This indicates that the vertical component when taken to be
50 per cent of the horizontal component is more intense than the‘ actually recorded vertical
component of ground motion. It may be of interest to mention that based on specrum
intensities, for damping equal to 20 per cent of critical, the actually recorded vertical
componet is only about 25 per cent as intense as the horizontal component.

For the two cases A and B, the displacements are close to each other.

Dynamic Stresses

Dynamic stresses are the changes in stresses over the static stress condition. These
have been evaluated for the two cases A and B. Principal stresses have also been computed
and are given by :

0d; = Cg, p.H

Odg = Cip . P . H

Gd]s ‘: Cdlg . P . H (37)
where  ¢q; = Major dynamic principal stress

Il

Cdy Minor dynamic principal stress

9312 = Maximum dynamic shear stress

¢a; = Coefficient for major dynamic principle stress
Cse = Coefficient for minor dynamic principal stress
Cd1p = Coefficient for maximum dynamic shear stress

For the example considered, p H = 270.83 Ibs/sq. in. Using this the principal
stresses can be evaluated using Eq 37. Maximum values of the principal stresses during the
history of ground motion have been obtained and these are presented in Tables 5, 6 and 7.

It may be noted from Table 5 that the maximum principal dynamic stresses do not
occur at the top but occur at about 2/5 height from the top of the dam. The maximum
principal stress is of the order of 54 p.s.i. These are maximum near the slopes and
decrease towards the central axis of the dam. The maximum shear stress is of the order of
31 p.si. and occurs at the base of the dam. These are generally maximum near the
central axis of the dam and decrease towards the slopes. Due to the combined effect of
horizontal and vertical components of ground motion, the maximum principal stress is of
the order of 58 p.s.i. and the maximum shear stress is of the order of 32 p.s.i. The
general pattern of stress distribution is similar as obtained for horizontal ground motion
alone. A comparison of tables 5,6 and 7 indicates that due to the combined effect of
horizontal and vertical components of ground motion, the dynamic stresses are not
appreciably altered than those obtained due to horizontal ground motion alone. Further
for the two cases A and B, the stresses are close to each other.

Conclusions
On the basis of this study, following conclusions can be drawn :

1. The use of a combination of rectangular elements in the structural idealization
is better in comparison to the use of triangular elements alone as for the same order of
accuracy, the number of degree of freedom in the former case is much less than in the
latter thus resulting in considerable saving of memory space and computation time of the
digital computer.
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TABLE 5% |
Comparison of Dynamic Stresses
Due to Horizontal Ground Motion
Nodal Case-A Case-B
Point
No. o4y Odq Od1q o4y Odq Tdys
1 —14.08 14.08. 14.08 —11.05 11.05 11.05
2 —38.35 28.95 23.72 —31.82 24.16 19.80
3 —19.15 19.15 19.15 —17.22 17.22 17.22
4 —28.95 38.35 23.72 —24.16 31.82 19.80
5 —53.90 45.50 28.71 —51.05 41.27 21.79
6 —27.81 27.81 27.81 —27.68 26.68 27.68
7 —45.50 53.90 28.71 —41.27 51.02 27.79
8 —47.23 45.91 23.56 —50.18 46.20 25.32
9 —50.54 46.37 26.92 —49.83 43.31 28.36
10 | —29.47 29.47 29.47 —30.82 30.82 30.82
11 —46.37 50.54 26.92 —43.31 49.83 28.36
12 —45.91 47.23 23.56 —46.20 50.18 25.32
13 —35.10 38.57 20.39 —35.86 39.92 22.18
14 —42.57 42.74 26.22 | —38.65 40.33 26.79
15 —28.76 28.76 28.76 —28.90 28.90 28.90
| 16 —42.74 42.57 26.22 —40.33 38.65 26.79
17 —38.57 35.10 20.39 —39.92 35.86 22.18
18 —22.91 26.92 15.79 —24.21 30.90 21.96
19 —37.65 40.68 28.00 —35.37 39.70 31.04
20 —31.12 31.12 31.12 —32.80 32.80 32.80
21 —40.68 37.65 28.00 —39.70 35.37 31.04
22 ~—26.92 22.91 1579 —30.90 24.21 21.96

**Dynamic Stresses presented are in p.s.i.



40

Bulletin of the Indian Society of Earthquake Technology

Table 6%*

Comparison of Dynamic Stresses Due to Horizontal and Vertical Ground Motion

Vertical Component Being 509, of Horizontal Component

Case-B

Nodal Case-A ‘

Point _

No. od, od, od,, l od, od, ody,
] —14.41 15.00 14.16 1267 10.86 11.21
2 ~36.10 26.08 24.24 —32.72 24.65 21.69
3 —18.17 21.45 19.20 —18.28 18.50 17.28
4 —34.64 41.22 23.32 —24.86 32.47. 18.52
5 —49.43 41.71 28.36 —48.40 39.43 27.57
6 —34.02 35.88 27.81 —25.89 31.39 27.68
7 —50.67 58.36 20.11 —44.09 53.95 28.25
8 —47.26 46.55 25,33 —46.53 46.12 24.70
9 —46.56 44.80 28.33 —43.22 41.79 28.46
10 —43.52 42.52 29.66 —36.29 37.97 31.01
1 52,05 56.17 26.24 ~51.62 57.33 28.82
12 | —46.56 48.91 22.21 —49.83 54.95 27.33
13 —37.62 43.87 23.26 —40.49 44.63 24.08

14 —40.46 47.86 29.60 ~38.38 47.31 30.28
15 —43.79 48.61 29.01 ~38.30 43.03 29.47
16 —51.51 53.62 25.62 ~45.80 47.53 26.79
17 ~37.70 32.80 19.72 —38.16 33.53 21.12

18 ~24.70 30.01 17.52 ~30.14 31.31 22.40

19 —40.87 50.40 31.61 —38.81 48.97 32.66

20 —41.98 53.14 31.23 38.57 47.99 32,88

21 —49.29 51.16 29.11 —41.44 44.01 3150

22 ~2535 2142 14.87 —32.64 2272 21.69

**Dynamic Stresses presented are in p.s.i.
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Table 7**
Comparison of Dynamic Stresses Due to Horizontal and Vertical Ground Motion
Actually Recorded Vertical Component
Nodal Case-A Case-B
Point
‘No. od, od, odys od, od, ody,
1 —14.62 13.57 14.08 —11.59 10.51 11.05
2 —37.97 30.09 23.78 —32.39 25.43 20.45
3 —19.28 19.20 19.15 —18.23 - 16.25 17.22
4 2817 3897 23.70 —22.89 3125 19.15
5 —53.35 44.98 28.79 —50.86 41.08 28.03
6 —2771 . 29.01 27.87 —27.52 28.00 2781
7 _46.53 5444 28.65 —41.49 51.21 2757
8 —47.86 46.91 25.02 —50.51 46.18 25.76
9 —51.16 46.99 27.44 —49.51 42.90 28.87
10 —35.32 30.60 29.55 -31.23 31.63 30.87
11 —45.80 50.54 26.41 —44.17 50.73 27.84
12 —44.90 46.64 22.13 —46.20 49.91 25.02
13 —34.40 41.11 21.53 3526 4136 22.18
i4 —44.77 43.68 28.57 —41.03 42.33 - 28.33
15 —44.80 36.89 28.76 —38.08 34.42 29.03
16 —42.22 41.87 25.57 —40.00 38.92 26.89
17 —38.02 35.86 20.39 —39.84 36.43 22.18
18 _251 2152 16.09 —25.05 30.44 2175
19 —42.36 44.36 30.06 —39.54 42.71 30.79
20 —48.10 40.87 31.12 —38.13 38.05 32.80
21 —42.25 40.35 28.27 —40.79 37.73 3128
—26.92 23.43 15.79 —31.63 23.67 22.18

22

% Dynamic stresses presented are in p.s.i.
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motion, the dynamic stresses are not appreciably altered than those obtained due to the
horizontal ground motion alone. Also the effect on the horizontal displacments is small
though the effect on the vertical displacements is significant and is more pronouced near
the central axis of the dam.
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