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antangu&ag,shm: core isane oftha wmmpniyua&m Md éhemwnbmom da
tall building. Thiss because of its superior; :structural -and the: advantage:it offers
from the functional and constructional pmmoﬁ iew, The behaviour of such cores (which
are invariably perforated l)m bending, has beex 4 iwell .ostablished. This paper
deals with the problem of torsional behaviowr-of ‘such perforated shear cores. This is

relovant to the current developments ‘whigh mmcjvmg imereased attention,

" To;;&on of a building mva}mll:l[z occurs ip praclice In thn ¢ase of earthﬁa;ko loag;

s would occur on agcount of the eccentrigi centre:

" rigidity of ‘the struct?u(:g Due to wind ﬁad? it would arnse on ; ﬁt of the likely
cocentricity of the resultant wind load whope direction ¢an in genera! be arbitrary. Some
of thebuilding codes recognise- this aspect qnit récommend }mwmon for the same.
Indian Codo L 8; 1893 (1970).0n Earth am wake Resistant Design of Structuresi :
the design eccontricity torbe 1.5 times the deviation betweén the ca!cul,ateu CEMILTY
and contrs- of rigidity. Rosman'™ roports that SEAOC Building. ﬂodg recommefids’a
minimum eceentricity equal to 5 percent of the largest building: dimeﬁsmn be ‘assumed mr
the wind load.

- Considertion of the floor, torsions is mvarmbly necessary for correct determmatlon of
the loads between the various load bearing sloments. Thare have been some Pubhcauons
in the recent past dealing with the three dimensional interaction of the lateral load buaﬂn
elements on account of floor translations and rotations!-#, The common approach
determining the load distribution is the displacement approach which is formulated in
terms of the floor displacements and rotations. The shear walls of narrow rectangular
sections and of those having negligible warping rigidities are assumed to catry only shears
in their own plane, while as a core-typs (closed thinwalled) element is assumed to carry
in addition to the shears (along the principal axes through the shear centre) a torsional
moment. The displacements of the elements at any floor level are expressed in terms of
the displacements and torsional angle-of the floor which is assumed to move as a rigid
body on account of 1tslar§e in-plang stiffness, The three equations of equilibrium eithor
written at each floor level® or in a differontial form® will lead to a system of simultaneous

: algebralc or differential equations respectively. Where core type shear elements are present
it becomes neceasary to account for the torsion carried by such elements since these
possess considerable stiffess for this action. This requires the knowledge of the torsional
characteristics of such cores, chiefly, the stiffness relat:ons accountmg or the restrained
warping effect.

Another 1mportant aspect of the determination of the structural characteristics of a
core wall lies in arriving at the relative participation of flexural and torsional modes of
vibration. Some resuits can be found in Reference (1), in which approximate energy
methods are used. Results of the exact mode sha%s and frequencies and response to
earthquake forces are yet not fully established ork bemg undertaken is pending
publication 14,
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The present paper deals with the basic problem of the torsional behaviour of a single
core. Expressions for the torsional stresses and stiffness have been obtained. The.
commonly occurring case of the rectangular core wall with symmetric openings on an
opposite pair of sides has been considered. The method followed is quite general and can
be extended to the cases of unsymmetric coupling of walls. A few papers have been
published in the recent past concerning this aspect. The paper by Jenkins and Harrison!”
is probably the first giving the analysis and test results for the torsion of a core wall, A
Ritz type encrgy approach has been used. Michael® has presented a formulation which
is suitable for symmetrical walls only. The method followed is not very general and cannot
be extended to unsymmetric cores. The treatment given by Rosman follows the theory
of the torsion of thin walled sections using sectorial properties. The method is capable of
being generalised. In the present paper the authors employ ' the familiar folded plate
theory in which the core is assumed to be a redundant combination of plates. The formu-
lation avoids the calculation of the sectorial properties and lends itself for generalisation to
unsymmetric cores. Though the constitutive equations are different they are equivalent to
Rosman’s'"! formulation. However, on account of certain differences in assumptions they
are not exactly equivalent to those of Michael’s® formulation.

CONSTITUTIVE EQUATIONS

Consider the rectangular core with bands of openings on a pair of opposite sides, as
shown in Fig. 1 (In this figure the floors are not shown). 'The core may be considered as a

~

>

Fig. 1, Perforated core shear wall
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combination of two coupled shear walls and two solid walls. On account of symmetry, a .
single variable. ©(Z) defines the torsion of the wall. By replacing the cross-beams as an
equivalent continuous medium, @ becomes a continuous function of the height and a
differential equation can be set up for its determination. The wall with openings is here
considered as two walls, each designated as wall 1, coupled by the cross-medium (Fig. 2).
The solid wall has been designated as wall 2.
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Fig. 2. Stress Resultants of wall elements

Figure 2(a) shows the equilibrium diagrams of the individual wall elements. The two
redundants are, the edge shear r between wall 1 and 2, and the shear force q at the point
- of contraflexure of the cross-medium. Fi gures 25 (c) and (d) show the differential element
with the internal forces. The redundant shears r and q are determined from the.conditions
of continuity as in the folded plate theory. The derivation of the differential equation is
briefly given in Appendix B. The governing differential equation obtained in the following
form:
EL[,0"" —GJ*8"=m )

This is of the form well known in the torsion of thin walled beams. The primes denote
differentiations with respect to Z. The quantity I, and J* are wall properties defined by
eqs. (23-25) of Appendix B. The quantity I, denotes the warping constant. This
quantity has been verified® to be the same as the warping constant determined from the
sectiorfal properties used in the general theory of torsion!). The section in this case
consists of two channel cross sections of web of depth B and flange width d,; the principal
pole of the sectorial coordinates is 0, the centre of the shear-core. The contribution of the
cross-beams is thus seen to be to the free torsion (St. Venant’s) constant. This is given
by J,, eq. (25) of Appendix B. .
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-~

The solution of the above equation is

) 0=A cosh «Z4 Bsinh «Z+CZ4+ D6 2)
where, .
P S Ay I 3
*=V E1, EL,

Here 6, is a suitable particular solution. The vartous quantities such as wall forces and
moments are obtained in terms of 6 and wall properties. ’

The expressions for the shearing stresses have also been given in Appendix B, These
are derived by the considerations of the equilibrium of differential segments, shown hatched
in Figs. 2(c) and (d). The normal stresses in the wall elements are simply obtained by
superposing the effects of M, and V, for wall 1 and from M, for wall 2.

Also of interest, from the design- point of view, is the shear force Q in the connecting *
beam. This is obtained as

Z+hfa

o=["" qdz @
Z-h/3

This can be obtained by direct integration either analytically or graphically.

Two particular limiting cases of the cross-beam properties are of interst;

Case I—Open Section-Cross-beam effect neglected.

Case lI—Closed Section-beams infinitely stiff.

Case I denotes the limiting situation when the cross beams are assumed to be - inef-
fective. The core wall section becomes in effect an open section consisting of two channel
cross-sections rotating about the centre of the core 0, on account of floors acting as rigid
diaphragms. For this case the parameter « can be taken as zero since, as will be seen
later from an example, the contribution of the cross-beams towards the free torsion
rigidity is quite large compared to that of the thin walled wall elements. The torque is
wholly resisted by the inplane bending of the wall elements. With the second term of eq.
(1) being zero the solution (2) degenerates to the polynomial solution

6=AZ*4-BZ+CZ4-D-16, %)
With q identically equal to zero the resulting expressions for moments and shear are
easily derived. This assumption gives higher stressesin the wall elements and can be used
for preliminary estimates, ,

The oiher limiting case can be considered 1o occur when the cross-beams are
infinitely stiff, making the core to behave as a beam of closed-section. It is well known
that the effect of restrained warping in sucha case is of more local nature and is usual
to neglect this effect and rely on the free torsion rigidity, which is very high. Inthe
general expressions derived if the quantity J* is replaced by the free torsion constant Jsof
of closed section and limits taken for « tendihg to infiinity, the results of the free torsion of
closed box are obtainable. The general expressions derived for the two loading cases
considered in paper, have been tested for this limiting case by comparing them with the
well known results of the free torsion of beams of closed sectionf!®, The shear flow

obtained by this assumption may be used for the connecting beams. The bending effects
in the wall would be completely absent in this case.

APPLICATIONS

Two cases of loading have been considered. The solutions are briefly described in the
following paragraphs., A wall built into the foundation has been considered.

(a) Constant Torque

This is produced as a result of a torque T applied at the free top of the core. The
boundary conditions are

0 (0)=0; 0" (0)==0; 8 (H)=0; T (H)=T (6)
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The particular integral is absent in this case. After evaluating the arbitrary constants,
solation (2) becomes

_ T sinh « (H—2Z)
=g S+ gt 4T —tanh oH | ”

All other quantities can be derived in terms of the derivativés of 6 as per the equations
given in the Appendix. B. ' '

(b) The linearly varying torque
This case corresponds to the loading of ‘the wall by an uniform torque of intensity
m per unit length; the torque on the wall varies linearly from zero at top to mH
at the base.
The particular integral in this case will be
‘ ‘ m 722 m 2
_ =ErF T-EL 27 ®)
The first three of the boundary conditions (12) would remain the same the fourth one being
T(H)=0. The solution for this case is obtained as follows:
m 1 +«H sinh «H . o?z?
e:"_El(,, pe! coshal — (cosh «Z—1)~aH (sinh aZ—mZ)—T )]
Asin the previous case, all quantities are obtainable in terms of the derivatiens of 0.

It may be noted here that for digital computation all the necessary calculation steps can be
made in terms of matrix algebra. .

The limiting cases discussed earlier, namely «=0and «= co for the two loading con-
ditions are as follows: For «=0, we obtain

T z:
| °=E'( nz-Z . (10)
for the constant torque loading, and '

g ( Z: HZ® H2Z:

_ . B\t 4 (11)
for the linearly varying torque loading.
These can be derived by taking solution (11) instead of (2) or by taking the limits of

the expressions derived earlier. Forthe other extreme case of « tending to infinity we
obtain the well known relations
- T

0= Z (12)
and
m Z2
O=gr- (HZ——Z—) (13)

for the two loading cases respectively. These are the limits of the general expressions for

atending to infinity.* These can be directly derived by deleting the first terms of eq. (1)

and replacing J* by Js, the free torsion constant of the closed rectangular section. The
shear flow in this case is constant all along the contour.

. Inthis paper the exptessions for other quantities such as wall shears moments etc. are

- not presented. These are available in References 11, and 13. .

In practical situations, the wall properties and loading may vary along the height.

The general method of solution is best obtained by using cither the stiffness or transfer

methods™).  These matrices are available in the literature™® and can be used conveniently.

* Note that J* is to b2 replaced by J, the free torsion constant of clos=d section.
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In fact for the problem of load distribution between the different load bearing elements,
the core can be considered as a beam under bending and torsion with apppropriate
stiffness used depending on whether the warping restraint is considered or not. Recently,
Coull and Irwin® have considered the problem of the load-distribution for a building
taking only the free torsion effect of shear core.

The findings of a limited study of the variation of actions due to the variation of the

parameter « are as shown in Fig. 3 The variations of core rotation 0 and wall moment M,
for different values of a varying from zero to about 8 are shown. The practical values

of a are likely to be between 7 and 10. Evidently the contribution of the cross beams is
quite substantial and has to be included.

o8
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Fig. 3. Variations of  and (M or M,) with «
(Case of linearly varying torgue)

EXAMPLE

A life shaft core, Fig. 4, square in plan of side 12 m, wall thickness of 0.6 m and -
height of 105 m has been considered. There are openings 2.5m x 3m on  a pair of opposite
sides giving 1 m deep beam in a storey height of 3.5m. The Poisson ratio has been taken
as 0.1. Thus we have

B=D==12; a=3m; d;=4.5m

h=3.5m; t,=t,=0.6m; p=0.1.
For this example we obtain I,,—33326 m?®; the free torsional rigidity of the walls, J,=2.94
m?; the quantity denoting the contribution of the connecting beams to the total torsional

rigic_iity, Je=447.5 m*. Thus itis seen that the cross-beams considerably add to the free
torsion rigidity.  Practically this only need be considered. The parameter « works out

to be 0.0784 m—?, giving the non-dimensional quantity, a=xH=§.23.
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Fig. 4. Perforated core shear wall located Inside a bullding

Figure 5 shows the variations of the wall rotation 0, and the shear force q at the points
of contraflexure of the cross-beams, under uniform torsional loading of intensity m per
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Fig. 5. Variations of 6 and q (Case of uniformly distributed torque m per unit height)
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unit height. The short term ‘open case’ denotes the case of the cross-beams being absoat,
Since J, is quite small compared to J, the parmster o has been taken equal to zero for this
case. Itis readily observed that the cross-beams provide considerable stiffness against
rotation. Infactthe stiffness of the core is more nearto that of the closed box section,
The variation of q.is very similar to that occurring in the bending of couplod walls. This
is naturally so because of the physical fact that each of the four walls are bending in their
own plane due to restrained torsion. Variation of moments shown in Fig. 6 also conform
to this pattern. Several figures showing the variations of other quantities such as the
wall shears, the shear forces at the junciions etc. for this and the other case of the constant
torque are available (112,
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" Figures 7 (a) and (b) show the shearing stresses, in terms of the applied loading m for
the general case obtained by using eqs. (3.) and (32) of Appendix B. The normal stresses
in wall I are due to M, and V, and in wall 2 due to M, alone. These are as shown in Fig.

7 {c).
COMﬁ]N-ED BENDING AND TOR_SION.

. The stresses due to torsion on account of the possible eccentricity of the lateral load
were computed Y for the example discussed above, A building plan of 24 mx 24 m was
assumed as shown in Fig. 4. Takiig possible eccentticity e of the lateral load at 5 percent
of the lateral dimension, namely 1.2 m, the stresses were computed. The lateral load p
was assumed uniform along the height. The stresses in the perforated wall due to the
bending action were computed using the method given by Coull and Choudhary!2.) Figure
8 shows the comparison of the normal stresses due to bending as well as due to the tors-
ion, It is observed that the effect of torsion is of the order of five percent that of bending.
In case higher eccentricities are encountered these may become comparable. The shearing
forces in the connecting beams were compared and it was observed that due to torsion and
bending the values were 22.75p and 298p at Z/H=0.2€6, and 21.30p and 333p at Z/H=
0.17. The shear forces in the connecting beams are of the order of ten percent of those
due to bending.
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Fig. 8. Comparison of normal stresses at base section due to torsional and
bending effects of wind load

However; when a core is located unsymmetrically in the plan of the building the effect
of torsion will be significant,

TEST RESULTS

Two perspex models, one with and the other without the cross beams were tested 11
for the loading case of the torque applied at the free end of the core. Figurc 9 shows the
comparison of the test rosults with the analytical calculations. The agreement has been
very satisfactory. The warping strength of the floors has not been accounted for in the
proposed analysis, so also the effect of shearing deformations of the wall elements of the
perforated wall. These effects are likely to be small from the practical point of view.

CONCLUSION

The folded plate approach used in deriving the differential equation is simpler and
permits generalisation to cover unsymmetrically coupled walls. It has been shown that
the cross beams provide considerable stiffness. The stiffness is nearer to that of a closed
section. With differential equation in terms of the wall rotation available calculation of
the stiffness or transfer matrices is straightforward. The stiffness of perforated core wall
including the restrained warping effect can be used in load distribution analysis.
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Fig, 9. Test Results
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APPENDIX-A
NOTATIONS
H —Height of the core wall,
B,D —Sides of the rectangular cross-section,
t,t, —Wall thickness,
h —Spacing of wall openings,
a, d, — Distances for openings (Fig. 3),
M;,M,,§,,5,—Wall moments and shears,
v, —Axial torsion in wall I,
r,q —Shear flows,
Ay, I, A;, I,—Areas and moments of inertia of wall | and 2 respectively,
Ap, Iy —Area and moment of inertia of connecting beam,
Y, B2 —non-dimensional parameters for the cross-medium,
Jo, Je —Free torsion rigidities,
I, —Warping inertia,
3 —non-dimensional stifiness parameter,
m —-torsional moment intensity.
APPENDEX-B
DERIVATIONS OF BASIC EQUATIONS
A. The differential Equation (Fig. 1 (a), (b}, (c) and (d))

where, I =t, i
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{a) Wall displacements:
B_- D
Nn==7 0 Xp=5 0
(b) Equilibrium of wall 1:
. ., 8
Vi=—(+q); $;=My'+-r5' —q (d—‘zﬂ)

M,=El, y,"=—ElL :‘? 6"

3
1

A,

(¢) Equilibrium of Wall 2:
S;=M,’}-Br; M, = —EI, x;=_1~:1,-12? ¢
B3

where I,=t, 7

Use

(d) Strain Compatibility between wall 1 and 2
” dl v] _ I3 B
1 5t AE 3

of egs. (1, 2) leads to: V,;=EC, 6"

(1,2

G, 4
()
(6)

(7,8

(%)

(10)
(n
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whers, “ABpiay )
(e) Conthﬂtyntthmﬂltofmtnﬂemnfﬁe cross miedivm. o
This analysis is similar to the one fallowod in the bending of the coupled walls,

The relative movement between the two ends at the cut due to bending, and stretching .of
the wall and due to the redundant q is set equal to zero." Therefore, S

3
.V, 4 '
Grayyi-2 [FR gL pog | (13
12E ( < ) -
where B is the factor to m.clude the effect of the shear flexibility of the cross-medium:
B=1412 é b - .
Atk 5

where A} is the effective area for deflection due to shear. (The factor B2 is the same as

introduced by Beck.)
(D Derivation of the differential equation.

Use egs. (1)-and (11) i in-eq. (13); aftor integrating, we obtain, .
q=—EyBD# ' . (15

I, | M
where Y= lza,(ﬁ; ) _ (16)

Eq. (3) gives rin terms of V, and q:

=—V,"—q=—EC, 8" —q ' amn
The shear forces S,aftd S, can be obtained fYom eqs. (3) and {7, in which r is replaced
in terms of q fmmaq ). Thus e

Sy=—7% UIB+c,d1)e'—9q o (1)

s,=—E(I, =1 GB )ﬂ"-—Bq ¢

- The torque due to these shears is 2S, B4-§, D. - The tofque due to the free (St. Venant's)
torsion is GJ, 0’ where J is the free torsional ri gidity of the wall elements, fiamely

B 4t B
— . (20)
Thus the torque at any section is given by '
T=2S,B+S, D+ GJ, & A 7))
 This in terms of 6, given by eqs. (18, 19, and 15) becomes _

T=-—EI, 0" +GI*0 22)

where, : ‘
L= B+C,4)B+(L7+CB)D @3)

J‘. =JO+JG . (24)
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— E 22 E 12In 2Ty2
| Yo=2 & 7B*D*= GWBD (25)
The equilibrium of the wall under a torsional loading of intensity, m is
) ' ’ T =—m . (26)
Thus FI, 0" —GJ*¢" =m 27

B. Shearing Stresses

Walt 1. Consider the equilibrium of the hatched portion shown 'in Fig. 2(c). 1If
q(yy) is the shear flow (stress multiplied by thickness), then equilibrium of the shaded
portion requires,

d
@9 da=[ " dat, g (28)
1
where y, is the distance of any point from the centre of the wall. The stress o is given by
g=—=— M‘ly]_--f-\é (29)
1,7 T A ‘
Dividing eq. (28) through by dZ and using the above equation we get
M, v/
Q0)=—q+-1~ K} 5> A* | (30)
1 1 '

dr , ' .
where K} = I y'{ nt, dv, is the moment of the shaded area about the centre of wall. A*is
1

the shaded area.
Using eqgs. (3) and (4) for V,’ and M,’ we get

d d,+a
SI_T?I +q 1;- l-+q .
q(y)=—q+ T, K1 +—x A (3D

~Wall 2. Similarly for wall 2 we obtain for a point distant x, from the centre of the
wall, the shear flow

S.—B N
q (X)=xy-}-—2 1, d K3 ' (32)

It may be verified that the sum of shear flows of wall 1 works out to Sl-}—q;— and for wall 2
to S,. The cross medium applies a variable moment g % which causes the additional shear

flow of gq g.



