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ABSTRACT

A simple method for nonlinear analysis of cross-braced multistorey frames with hysteretic dissipative
devices, subjected to monotonically increasing horizontal loads (push-over analysis) is presented. It is
based on 2 model able to provide the approximate tangent condensed flexibility matrix of the system by
closed analytical formulae. The model takes the axial deformability of the frame into account,
considering that it significantly influences both the fundamental period and the corresponding mode of
vibration of the structure. It enables one to evaluate separately the contributions to the first mode shape
due to both the flexural deformability of the frame beams and columns (shear type behaviour) and the
axial extension of the frame columns, furnishing further insight for the seismic design of the structure.
The proposed simplified method is validated by comparison with the results of a push-over analysis
performed by a FEM computer program for some frames. Moreover, the effectiveness of the push-over
analysis in assisting the design procedure of the structure is checked by evaluation of the time history of
the seismic response.

KEYWORDS: Cross-Braced Frames, Dissipative Devices, Nonlinear Seismic Response, Step-by-Step
Static Analysis

INTRODUCTION

One of the most reliable methods for prediction of seismic behaviour of a structure is to perform a set
of nonlinear time-history analyses of the response of the actual multi-degree of freedom structure, for
different ground motion accelerograms. Nevertheless, this procedure is not practical for everyday design
use, due to the great cost in terms of computational effort that it requires. '

In everyday practice, either a very simple static approach (the equivalent lateral force procedure) or a
simple dynamic approach (spectral modal analysis) is used. Both methods are based on the assumption of
linear elastic behaviour. However, because of its straightforward nature, the inelastic response spectra-
based modal analysis has been considered a potential method for inelastic structural design. Studies have
concluded that this procedure may either yield unconservative designs [Haviland et al. (1976), Luyties et
al. (1976)], or lead to designed structures which may, on average, be expected to resist base shears that
are two or three times larger than the code design values [Housner and Jennings (1982)] without major
structural damage.

Recently, several researchers have emphasized the need for changes in the existing seismic design
procedure prescribed by the codes [Bertero-et al. (1991), Priestley (1993), Krawinkler (1994)], aiming ata
simple procedure of wide applicability, taking full advantage of presently available ground motion
information and engineering knowledge. A promising method seems to be the one that has been proposed
in different forms by several authors [Saiidi and Sozen (1981), Fajfar and Gaspersic (1996)]. It is based
on a nonlinear static analysis of the MDOF system under a monotonically increasing lateral load (push-
over analysis) and on a nonlinear dynamic analysis of an equivalent SDOF system, able to capture the
main characteristics of the dynamic behaviour of the actual structure. Dynamic analysis may also be
avoided if inelastic response spectra are utilized.

The nonlinear characteristics of the equivalent SDOF system are determined on the base shear top
displacement relationship of the actual MDOF structure, obtained by the push-over analysis. The latter
also allows one to evaluate, for a fixed value of the top displacement, local seismic demands for different
response parameters (displacement, ductility, dissipated energy demands, etc.).
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It is useful to remark that the method is applicable to structures oscillating predominantly in a single
mode, because the most essential assumption of the method is a time-independent lateral displacement
shape of the structure. Therefore, the influence of the higher modes cannot be properly taken into
account. In order to predict accurately the lateral displacement shape of the structure, it is of fundamental
importance that the nonlinear static analysis is performed by assuming, at each instant, a pattern of the
external static load increments proportional to the mode shape corresponding to the tangent stiffness
matrix of the structure.

Within this framework, in this paper an analytical model is proposed which can be used to perform, in
a simplified but accurate manner, the push-over analysis for cross-braced moment registant steel frames
equipped with dissipative devices. The model takes the axial deformability of the frame into account,
which is usually neglected in most of the studies on the behaviour of the structures examined [e.g.
Filiatrault and Cherry (1989, 1990)]. It is shown that it significantly influences both the base shear-top
displacement relationship and the fundamental mode shape of the structure. Moreover, the proposed
model allows one accurately to perform the push-over analysis, casily evaluating the instantaneous shape
that has to be assigned to the increments of the monotonically increasing lateral forces.

The model can be utilized as an aid for the design of the structure because it reveals the influence of
the different structural elements in determining the system response. It makes it possibie to calibrate the
strength of the dissipative devices in such a way that they begin to operate simultaneously when a strong
earthquake occurs. This condition maximizes the effectiveness of the bracing system in reducing the
seismic demand of the structure.

MODELLING OF STRUCTURE

The formulation which will be proposed here is based on the simplified frame model shown in Figure
1(a); where the symbols which will be utilized are also pointed out.

The frame is assumed to have an infinitely elastic behaviour; namely, it is assumed that the diagonal
braces and the dissipative devices inserted at their intersection are designed to prevent plasticisation of the
structural members of the frame. The beams are assumed axially inextensible, while the axial
extensibility of the columns is taken into account, because it can produce significant deck rotations
influencing the horizontal displacements. Moreover, at a given storey the two colurmns are assumed to be
made with the same steel profile and to be oriented identically in plan.

The i-th stiffening diagonal brace is assumed to behave as a slender strut hinged at the ends and
affected by the critical load value P, ;. The maximum load value in tension P, ,, playing the role of a

conventional yielding load, is actually the axial tensile force acting on the brace in the load condition at
which the dissipative device begins to operate (the device obviously has to be calibrated so that the actual

yielding load of the brace is greater than F, ;). This modelling criterion is able to represent with very
good approximation the behaviour of a large class of bracing systems equipped with dissipative devices,
characterized by stable hysteretic “elastic-plastic” horizontal force-displacement cycles, as shown by
Colajanni and Papia (1995, 1997).

Denoting as f; the angle of inclination of the brace with respect to the horizontal direction at the i-th
floor, and setting

Son.i = Pcoii msﬂi (la)
S = Fio 008 5, (1)

The horizontal strength of the dissipative bracing systems considered is F,, =S,,+S_;. The
lateral stiffness, on which the slope of the elastic branch of the force-displacement cycle depends, can be
related to the two lateral stiffness values obtained considering th_e force-displacement law corresponding
to the adopted modelling. This is because in the proposed model the strength F, ; is reached in a first

phase of response, in which both diagonal braces behave elastically, followed by a second phase in which
the brace in compression is buckled. '

Further basic assumptions in the model shown in Figure 1(a) concem the condition of zero value of
bending moment at the middie-height section of each column, and the inter-storey height, which is the
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same at each level. Actually, the latter assumption could be removed without special difficulties;
therefore it has to be considered as a working hypothesis simplifying the formulation.
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Fig.1 Modelling of structure and symbols: a) equilibrium condition; b) compatibility condition

FORMULATION

The equilibrium condition of the system in Figure 1(a) can be expressed by the three equations

(B, +P,) cosB+2,= 3 F, =T, @

(P,~P.)sinf=N,_-N, ®)

N, +N, =2tanﬂi:}?j(j-—i+%)= tanﬁ(i’} +2 ZT’J 4)
J=i Jmi+l

where n is the number of storeys, I is the shear value at the i-th level due to the external horizontal
forces,and S =B, (i=1,2,...,n).

The scheme in Figure 1(b), showing the length variations in the columns and braces at the i-th storey,
sugyests the following compatibility conditions:

Ab_, Ab,,
—+Ac,; tan f = ——+Ac_; tan ff = Ax; &)
cos § ' cos 3 ;
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where Ax; is the horizontal component of displacement of the i-th storey with respect to a system of
reference moving jointly with the (i-1)-th storey.

Equations (2) to (5) and the force-displacement relationships referring to the single structural
elements make it possible to link the relative horizontal translation Ax; to the values of horizontal
(seismic) shear 7 acting at each storey (i =1, 2,...,n). This relationship at the i-th storey has to be
specialized in accordance with the occurrence of one of the following work conditions of the diagonal
braces:

condition I: both diagonal braces behave elastically;

conditien II:  the diagonal brace in compression iz buckled and the one in tension is in the elastic

field (IJ“ = Pco.i and Pu' < Rra.i );

condition III:  the diagenal brace in compression is buckled and the dissipative devicé is active

(Pc..' =F,; and F, = Pm.i);

1. Condition I: Both Diagonal Braces in Elastic Field

On the basis of the assumptions in the previcus section, considering the symbols in Figure 1(a), one
can set

F,=F;=F (6a)
N,=N, =N, (6b)
Moreover, with reference to the scheme in Figure 1(b),
Ab,; = Ab,; = Ab, (7a)
Ac,; = Ac,; = Ac; (7o)
Therefore, Equations (2), (4) and (5) become respectively
2P cosf+2V, =T, ®
N,.=~1-tan T}+2iTj) (]
2 Jui+l
Ar, =25y ac tan g (10)
cos ff

Denoting as £ the Young's modulus of the stec] material and as 4, ; and L, the cross-sectional area

and the length of the diagonal brace at the i-th storey, respectively, the axial stiffness of this brace,
evaluated with respect to the horizental and vertical directions, provides the expressions

EA
ki, =—I’-'icos’ B (11a)
d
EA oy
k. =—1-£sin2 B =k tan’ B (11b)

7
By the same criterion, the lateral and vertical (axial) stiffnesses of the columm at the i-th storey of the
cross braced frame are expressed by

12E1
k=5t (122)
ke = Ede; (12b)
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where A, and I_; are the cross-sectional area and the flexural moment of inertia of the column, and
@; <1 is a coefficient reducing the shear stiffness of the column, taking the elastic rotation at the top and

the base of the colurnn itself into account. The values of @; at each storey can be determined by means

of different simplified approaches. In this paper the procedure proposed by Ramasco (1985) and briefly
describsd in Appendix is adopted. Considering that

Ab, =—-'-P;':—o(;)s2 Jij (13a)
k,;
N
Ac, = kfi. (13b)
P = IC' (13¢)
ki
by using Equations (8), (13a) and (13c), one obtains
1T k,
Ab, =| =~ ——% Ax, |cos 14
4 (2 k:', k:J i ] ﬁ ( )
Morcover, considering Equations (9) and (13b) gives
Ac,.=-—l— T,+2)'T, {tan B (15)
‘ 2k,; Juivl

Therefore, introducing Equations (14) and (15) in Equation (10) and considering Equation {11b), one
obtains

1 i 1+y . ]
Ax, = — —>T+y . YT 16
' ki 1+7u( 2 ' 7,,,1;1 1) (16)
ky; .
where, Yai =T (17a)
ky;
kL
ey 17b)
Vi K, (

2. Condition IT: After Buckling of a Diagonal Brace in Compression

In this phase the condition P,;=PF,, is assumed. Although many experimental tests have shown
that the load carrying capacity of a strut drops significantly following buckling, the assumption is justified
on the basis of the following considerations: (i) the reduction of the load carrying capacity is appreciable
only after the first buckling of the strut; (ii) during the subsequent cycles, the buckling load and the
tesidual carrying load capacity are similar, and they define the values that have to be assigned to P,
order to characterize the strut cyclic behaviour.

Solving the system of Equations (2), (3) and (4), and remembering Equation (1a), one obtains

1
FP,=\T.-2V,-§_.)— 1
[ ( i i co.f )OOS ﬂ ( 8

N,J=(I;—21}—V,.—Smj}anﬂ (19)

=i+l

4 in

N,_,=(21}+V,.+Sw.)tanﬁ 20

Juits
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Specializing Equation (13a) for the diagonal brace in tension and Equation (13b) for the column in
compression, the second of Equations (5), considering Equations (18) and (19), provides

1 1 2
ax, =—,(1:--2v:—sc...-)+—c(n+ YT~V =S | tn® B @1)
kln,i kv,i Jmitl

Therefore, deriving ¥; from Equation (13¢) and taking Equation (17) into account, one obtains

Ax, = [(1+rv,XT.-—Sw..-)+mi1}] @2)

k:,i 24y, tY. j=itl

3. Condition ITI: After Activation of Dissipative Device

Since in this case P,, =P, ; and F,; = F, ;, Ax; can be derived from Equation 2 considering
Equations (1a), (1b) and (13¢):

1
Ax, =£§(T.- ~Spi=Smi) (23)

RELATIVE DISPLACEMENTS AND DEFORMABILITY COEFFICIENTS

Denoting as u, the horizontal displacement of the i-th deck referred to a system of reference fixed to

the ground, the relative horizontal displacement Au; can be related to the value of Ax, by the
relationship

i-1

Au, =u,—u,, = Ax, +hY A, (24)

J=l

1N ;+N,;
here, Ap, =——=4 B 25
where. P; I7 k:'j (25)

is the rotation of the j-th deck with respect to the (j-1)-th deck, produced by the axial extensibility of the
columns located between these decks. ‘

‘Therefore, considering Equations (4) and (25), Equation (24) becomes

i-1 L]
Au; = Ax; +tan’ B kl (Tj +22T,,} (26)
J=l voj k= jl :

Remembering the expressions of Ax; in the three cases considered and using Equations (17a) and
(17b), Equation (26) can be written in the general form '

L] i-1 n
Au,=d, T, +d,, Y, T,+2 d, ,(rj +2 z‘,zr,,;}—(at‘.,s.,,,J +d, Js,,,_,) @n

Juitl i kw4l

where the deformability factors at the i-th storey, d, ; (k=l, 2, .5) can be expressed by
1 .
dy; =—cy, (k=12 ...5) @8)
k,“,.

The dimensionless coefficients c,; have to be specialized so that Equations (16), (21) or (23) are
verified, in accordance with the occurrence of work\condition 1, II, or III, respectively. The expressions
of these coefficients derived from the aforementioned equations are shown in Table 1.

Making the summations appearing on the right-hand side of Equation (27) explicit, it can easily be
shown that the relationship between relative horizontal displacements and seismic shears can be
expressed in matrix form by

u=D-T @9)
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where Au=[Au, Au, ... AuJ (30a)
| T=[f, 7, .. L,J (30b)
‘wnd D) is a square matrix containing the following terms
i-1 .
a;=d,;+2) d,, (=12 ..n)
k=]
’ =1
a; =dy; +2) dy, (=12 ...n and j>i) 31)

k=1

-1
a, =d,.j+2idu (=12 ..1nand i>j)

k=l

Table i: Expression of Coefficients for Calculation of Deformablility Factors

Coefficients ¢, ; = dy jky;

€L €2 C3 T €4 Cs,i

Condition I 1l4ry i Yvi, 0 0
21+yy; 1+ Yh,i

Condition I | —1*7vi Vv Vi & 0
24y y it ni 24y i+rni Yhii

Condition ITI 1 0 Yvi ¢ e
2 —
hi

FIELD OF APPLICATION OF DERIVED LAWS

For practical use of Equation (29), by means of which the evolution of the deformed shape under
increasing seismic loads can be foreseen, a criterion for the updating of the deformability factors must be
utilized.

A very simple procedure is based on the use of relationships linking at each storey the values
Scos+8,,, which characterize the response of the dissipative bracing system, to the scismic shear
distribution.

More precisely, starting from the vatues of d,, (k =1, 2, ...,5) corresponding to work condition I
for all dissipative bracing systems, the transition from this condition to condition II at the i-th storey can
be found considering that at this occurrence the diagonal brace in compression and the one in tension are
subjected to an axial force of intensity equal to P, ;- Therefore, taking Equations (1) and (13c) into
account, Equation (8) provides

1 (1
! k:’,.[Z m"] G2

Expressing Ax; by means of Equation (16), Equation (32) becomes
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=1n,,-—7v,,-r Vi iT'
2 1+7A,i ! 1'*‘7;,,,-;':.41}

(33)

-8

This equation relates the critical value S_; characterizing the bracing system to the shear distribution

at the occurrence of the transition from condition I to condition I for the i-th plane. The limit condition
at which transition from condition II to the condition Il occurs at the i-th storey can be found by

considering the compatibility condition expressed by the second of Equations (5), where Ax; is given by -
Eguation (23), and

Ab

1.4

Slo.i A _
=2 Cei
cos gk,

Nc,i
i =l (34)

in which N_; is expressed by Equation (19) Making these substitutions one obtains

(T; - S!a.i - Sm.l’) (35)

hi k:.l Zk;.i

S i n 2
T RS A L
k j=itl ’

Expressing V; by means of Equation (13c), in which Ax; is given by Equation (23), Equation (35)
provides the expression

(2 Vi YV ni )gro.i + (71:..' ~Vvi )gm.:' = ()’k.: ~Vvi )7: =2V iT, (36)

Jei+l

linking the seismic shear distribution to the strength values S

o ?

S, at 1 =300 KN

T

the occurrence of the activation of the dissipative device at the i-th storey.

'If the seismic force distribution is assigned, Equations (33) and (35)
can be used to design the optimal order in which the different work
conditions of the bracing systems have to occur, and to calibrate
activation load of the dissipative devices at each storey.

On the other hand, if an existing structure is considered, Equations
{(33) and (36) can be used to determine the seismic force intensity at
which a diagonal brace buckles or a dissipative device begins to operate.
A more convenient use of the aforementioned equations can be made by

normalizing the shear T at the i-th level with respect to the base shear

force T, i.c. setting
T,=t7T, 37
where the coefficients 7; depend on the shear distribution law.

Carrying out a push-over analysis, more accurate results can be
obtained by iteratively updating this distribution in relation to the
horizontal displacements corresponding to it, whenever a variation in the
work condition of a bracing system occurs. This vanation is pointed out
by the occurrence of the condition expressed by Equation (33) or
Equation (36).

H=259 m

NUMERICAL APPLICATIONS

h=2.70 m

The numerical applications which will now be described aim at
showing the reliability of the simplificd model proposed and the efficacy
of the push-over analysis in acquiring information about the actual L=S.00 m
seismic response of the struc considered Fig. 2 Structural

geometry of system
examined
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Three different solutions of the same design problem are considered as test examples. The structural
scheme common to these three braced moment resistant frames, equipped with dissipative devices, is
shown in Figure 2, in which the following common data relating to the cases considered have to be
assumed: n = 7 (number of storeys); L = 500 cm (span length); 2 = 370 em (inter-storey height);
G =300 kN (seismic weight of each storey).

The three different braced frames, named structures 4, B and C have been designed in accordance
with design criteria described in detail in Colajanni (1995), so that they have the same fundamental period
of vibration 7, =0.95s. Structures 4 and B are designed in such a way as to obtain a uniform
distribution of the damage along the height of the structure under seismic force distributed proportionally
to the first mode shape. In structure C, according to the procedure used by Filiatrault and Cherry (1990),
the unbraced moment resisting frame is designed without considering earthquake effects, and the bracing
dissipative systems are designed assuming constant values of the lateral stiffness of the bracing system
along the height of the structure.

Tables 2, 3 and 4 show section dimensions and geometrical characteristics of the structura] elements
utilized for structures 4, B and C, respectively. The aforementioned tables also show the values of the

critical load P, ; for the diagonal braces utilized. The limit strength of the dissipative bracing systems

(F“. =8t Sm‘,.) has been calibrated considering the design.base shear force T}‘D derived using the
response spectrum for a medium stiff soil condition, assuming a peak value of ground acceleration
A e =0.35g (g = gravity acceleration) and a behaviour factor g = 5.

Table 2: Characteristics of Sections Utilized for Structure 4

COLUMNS BEAMS BRACES
FL.LOOR
LEVEL | Section I A, Section I, A4 Buckling
(cm*) (cm?) (cm*) (cm?) ioad
Pgo (kKN)
1 HEA 300 18263 112 HEA 400 45069 17.1 80
2 HEA 300 18263 112 HEA 400 45069 17.1 80
3 HEA 300 18263 112 HEA 400 | 45069 15.1 60
4 HEA 300 18261 112 HEA 360 33090 13.0 50
5 HEA 280 13673 973 HEA 340 27693 10.6 40
6 HEA 280 13673 973 HEA 300 18263 10.6 40
7 HEA 280 13673 97.3 HEA 220 54710 10.6 40

“The behaviour factor g is an approximation of the ratio of the seismic forces, that the structure

would experience if its response was completely elastic to the minimum seismic forces that may be used
in design with a conventional linear model, still ensuring a satisfactory response of the structure”
{Eurocode 8 (Commission of European Communities (1994)]. It allows one to evaluate the minimum
global value of the strength that has to be assigned to the dissipative bracing systems. The limit strengths
of the dissipative bracing systems are calibrated at the different storeys in accordance with two different
distribution laws. The first solution is obtained by imposing the condition that the dissipative devices are

activated simultaneously for a base shear equal to 7;”. In this case the values of F,; are evaluated, once
T{D and S, are known, by choosing a suitable shear distribution law, and by solving Equation (36} with

respect to S,,;. The second solution consists in assigning strength values F, ; constant for all storeys,
equal to the maximum value previously calculated.

In a first phase, in order to validate the reliability of the proposed model, the response of the three
structures described above to an assigned and fixed distribution of monotonically increasing horizontal
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forces is evaluated. The accuracy of the results is checked by comparison with results obtained by using
the non-linear analysis computer code DRAIN-D2DX [Prakash et al. (1993)].

Table 3: Characteristics of Sections Utilized for Structure B

FLOOR COLUMNS BEAMS BRACES
LEVEL | Section L A, Section Iy Ay Buckling
(cm*) (cm?) (cm%) (cm?) load
Po, (KN)
1 HEA 260 10455 368 HEA 300 18263 28.2 118
2 HEA 260 10455 868 HEA 300 18263 26.2 96
3 HEA 260 10455 868 HEA 300 18263 22.7 83
4 HEA 260 10455 8638 HEA 280 13673 19.1 70
5 HEA 260 10455 863 HEA 260 10450 15.5 57
6 HEA 260 10455 868 HEA 260 10455 10.6 29
7 HEA 260 10455 868 HEA 220 5410 10.6 29

Table 4;: Characteristics of Sections Utilized for Structure C

In the analysis performed with the
COLUMNS = BEAMS DRAIN-D2DX computer program the
FLOOR columns and beams of the frame are
LEVEL | Section L=1 A modelled by means of the “plastic hinge
(cm*) (cm?) beam-column element (type 02)”. The
1 HEA300| 18263 112 dissipative diagonal braces are modelled
by means of the “inelastic truss bar
2 HEA 300 | 18263 112 element (type 01)”, yielding both in
3 HEA 280 | 13673 9713 tension and compression. The fictitious -
compression yield stress which is
4 HEA 260} 10450 80.8 assigned to the brace is derived from the
5 HEA 240 7763 76.8 buckling stress value; the fictitious yield
stress  in  tension is the one
6 HEA 220 5410 64.3 corresponding to the stress in the
7 HEA 180 2510 45.3 tension brace in the load condition at
| Ag=15.5cnm? Py =57 kN (=1,2,..7) which the dissipative device begins to

In a second set of numerical applications, a complete push-over analysis is carried out for the three
structures by using the proposed formulation. These applications imply changing the distribution of the
increments of the applied lateral forces, following the evolution of the first mode shape associated with
the tangent lateral stiffness matrix. In this way it is shown that the proposed approach makes it possible
to foresee the different seismic behaviour corresponding to the three design solutions, and consequently it
can be utilized to make design choices.

Finally, the reliability of the information acquired by the push-over analysis is verified by evaluating
the “exact” response of the systems considered to a given seismic excitation, performing a non-lincar
time-history analysis using DRAIN-D2DX.

It 13 useful to remark that the modelling adopted for the analyses performed with DRAIN-D2DX can
accurately reproduce the behaviour of dissipative bracing systems under monotonically increasing static
loads, while it tends to overestimate the dissipative capacity of the systems when step by step dynamic
analyses are performed. Nevertheless, this simple modet is able to furnish results with good accuracy for
seismic analysis purpose, especially if strong ground excitations are considered [Filiatrault and Cherry
(1986)].
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1. Validation of the Proposed Model

In this set of numerical applications the strength of the dissipative bracing systems is assumed to be
the same at all storeys, while the distribution of the seismic-equivalent static forces acting on the structure
is assumed to increase linearly with the height. The global horizontal force, i.c. the seismic base shear
T,, for each of the three structures examined is assumed to increase monotonically from zero to the value
producing the first plasticisation of a structural member of the frame, because beyond this limit condition
the proposed approach is no longer valid. _

The evaluation of the response by the proposed model is performed using an event-to-event strategy.
An event is defined as a change in structural stiffness due to buckling of a brace in compression or to
activation of a dissipative device.

The computational procedure is applied as follows:

1. The values of the coefficients «; appearing in Equation (12a) are calculated in accordance with the

distribution the share of shear borne by the frame (quantities 2V, at each storey), computed at the
occurrence of the last event before the current one. o

2. By normalizing the shear values by means of Equation (37) and using Equation (33) or Equation (36),
at each storcy the base shear value T, producing buckling of the diagonal brace in compression
(Equation (33)) or activation of the dissipative device (Equation (36)) ~ if buckling of the compressed
brace has already occurred —, is calculated.

3. The lowest value of T, ;i and the equation from which it was derived (Equation (33) or (36)) show the
type of event which is occurring and the storey i which is involved; for this value of base shear the
relative translations Ax,are calculated by means of Equations (16), (22) or (23), angd the shares.of
shear borne by the frame are derived from Equation (13c).

4. The shear distribution concerning the frame obtained by the previous step of analysis is compared
with that assumed at the beginning of step 1, and if needed, the procedure described for steps 2 and 3
is iteratively repeated, updating the values of «; up to convergence.

5. The vector Au is derived from Equation (29), which allows one to calculate the absolute horizontal

displacements «; at each storey; consequently, the deformed shape of the structure corresponding to
occurrence of the event found is derived.

6. The procedure is repeated starting from step 1 in order to determine the next event.
Figure 3 shows the top displacement values in the three structures in relation to the values of the
design base shear multiplier 7, /T,°.

The first plasticisation of a member of the frames occurs at the values T} /T;”= 2.4, 1.75 and 1.8 for
Structures A4, B and C, respectively. For this limit-condition, the maximum value of the top displacement
is about 25 cm for all the three cases considered. The centered symbols on the curves in Figure 3 indicate
the occurrence of an event (buckling of a compressed brace or activation of a dissipative device).

Comparison with the “exact” results obtained by the DRAIN-D2DX program poeints out the reliability
of the proposed simplified model. In particular, the simplified model provides almost exact values of the
herizontal-top displacement as long as activation of dissipative devices does not occur (T, /TP < 1),
while the accuracy level in the results decreases as the dissipative devices begin to operate at the different
sﬁ:reys This circumstance can easily be explained by considering that when the frame is subjected to
increasing values of seismic shear because of loss of lateral stiffness of the bracing systems, the
simplified modeiling concerning its elastic response (see Section 2) and the one allowing calculation of
the cocfficients @; exert a greater influence on the accuracy.

In Figure 3 the curves obtained considering that the columns of the frames are axially inextensible are
8lso shown. These curves derived by “exact” analysis show that the aforementioned assumption is
absolutely inadequate for the structural type considered here. This conclusion is confirmed by the values
of fundamental period of the three structures, calculated under the assumption of shear type behaviour,
they prove to be equal to 0.61 s, for structures A and B, and 0.53 s for structure C. These values are much
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lower than the actual value T, =0.95s. However, the special sensitivity of one bay frames to axial

deformation of the frame columns has to be remarked. If several bay frames are considered, with bracing

systems distributed in different bays, the effects of the axial deformation of the columns prove to be
reduced.

The accuracy of the results obtained using the simplified model is pointed out in greater detail by the
further information presented in Table 5, referring to structure A. The table shows the values of the

seismic design base shear multipliers 7,/7,° characterizing the occurrence of an event, the

corresponding type of event and the storey at which it occurs, and the corresponding horizontal top
displacement. These results are compared with the ones obtained by “exact” analysis.

Table 5: Results of Nonlinear Static Analysis for Structure A

PROPOSED MODEL DRAIN-D2 DX

T/ T | Storey | Event _ Top T/ T | Storey | Event ~ Top
Displacement Displacement

(cm) (cm)

0.444 3 B 1.99 0.429 3 B 1.99
0.489 5 B 221 0.494 5 B 2.23
0.606 | 4 B 279 |o606 | 4 B 2.78
0.632 2 B 2.92 0.632 2 B 2.92
0.657 6 B 3.06 0.647 1 B 3.00
0.691 1 B 325 0.667 6 B 3.11
0.969 2 A 4.86 0.980 2 A 4.92
1.07 1 A 5.60 1.01 1 A 5.14

1.10 3 A 5.94 1.10 3 A 6.02

1.178 7 B 6,78 1.158 7 B 6.57
1.240 4 A 7.50 1.251 4 A 7.59
1.504 5 A ll..06 1.153 5 A 11.22
1977 | 6 A 18.48 2.028 6 A 18.43
2.4 4 C 25.95 2.4 4 C 24.33

B = Buckling of a brace in compression
A = Activation of a dissipative device
C = Yielding of a beam of the frame

Figure 4 and Figure 5 show respectively the deformed shapes of the three different structure under the

design seismic force (T, / T,‘D = 1) and under the seismic forces corresponding to the values of design

base shear multiplier producing the first plasticisation on a frame member (limit condition). The curves
in these figures confirm the reliability of the simplified approach and the observations concerning the
results shown in Figure 3.

Finally, results of other numerical applications have shown that, when a load condition corresponding
to values (T, IT? < 1) is considered, i.e. when the dissipative devices are not activated, a good level of
approximation can be maintained by the proposed model even if the iterative phase described at step 4 of
the procedure to determine the values of the coefficients @, is not made. This also occurs when the
lateral stiffness of the frame at the different storeys is comparable with that of the bracing system. A
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more general conclusion is that the iterative procedure at step 4 can be avoided when the distribution law

of the portion of seismic forces bome by the frame does not exhibit significant variations during the
loading process considered.

2. Push-Over Analysis

The push-over analysis is applied to the three structures considered in the previous section in order to
stress the main characteristics of the expected seismic behaviour. In particular, this kind of approach
proves to be useful in verifying the influence of the stiffness and strength distribution laws for the frame
and the bracing systems along the height of the structures on the distribution of the response parameters
determining the “seismic demand” of the structures themselves.

As was stressed above, the accuracy of the information acquired by means of the push-uver analysis
improves significantly when the horizontal static equivalent seismic forces are distributed proportionally
to the fundamental modal shape of the system. The proposed model, at each increase in the global shear
7, during a work phase of the bracing systems comprised between two consecutive events, allows one to
distribute the corresponding increases in the static equivalent seismic forces proportionally to the
increases in the horizontal displacements occurring during the analysis step considered. The iterative
application of this procedure leads to a distribution of the increments of the force proportional to the first
modal shape corresponding to the tangent lateral stiffness matrix.

Thercfore, the procedure described in the previous section to update the coefficients @, iteratively is
applied here to calibrate the force increases too as follows: at step 1 the increases in the external
horizontal forces are assumed to be proportional to the increases in the horizontal dispiacements detected
at the occurrence of the previous event; at steps 2 and 3 the increase in the base shear AT, producing the
next event is calculated; then, before the iterative procedure at step 4 is applied, step 5 is carried out in
order to determine the displacement vector Au and, consequently, the accuracy of the distribution of the
force increases which was assumed. The procedure described for steps 2 to 5 is repeated up to

convergence of the values of the coefficients @, and of the normalized increment Az, = AT,/ AT,.

It must be observed that by using this procedure and considering what was pointed out in section 6,
the load activating the dissipative devices can also be calibrated, taking into account the variation in the
distribution law of the external forces consequent to buckling of the braces in compression and variation
in the lateral stiffness of the frame due to the variation in the share of the seismic force carried by the
frame. The effectiveness of this calibration method is stressed here carrying out the push-over analysis
for the three structures A, B and C, and assuming dissipative bracing systems with the same strength at all
storeys, or with strength distribution calibrated to simultaneous activation. The symbols referring to the

latter class of systems are stressed by the notation ( ), in what follows.

The push-over analysis is applied assuming that all the structures considered reach a maximum top
horizontal displacement of 10 cm. This value is calculated by means of the expression

Uy man = PB(T,) (f—;)Agm (38)

where T, and A, are defined in section 6, p is a reduction factor due to the presence of dissipative

devices, and (T} ) is the value of the pseudo-acceleration of the normalized clastic response spectrum
for a 0.05 viscous damping ratio. The coefficient p takes into account the fact that, for this kind of
system, the inelastic response is reduced with respect to that of an elastic system having the same period
and viscous damping ratio; it can be assumed to be equal to 0.8 for the values of T, and g considered, as
shown in Colajanni and Papia (1996). According the Eurocode 8 (Commission of European communities
(1994)), assuming & medium stiff soil condition (spectrum type B), the values of (T, ) are
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B(T,)=1+1.5(z; /0.15) 0<T, <0.15
B(7,)=25 01557, 0.6
B(T,)=25(006/T,) 0.6<T, <3 9

p(5;)=2.506/3T;) 3<7,

In examining the results which will now be shown, it must be observed that the limit condition of
plasticisation occurring for a member of the frame and the expected damage in the non-structural
clements of the building mainly depend on the share of relative translation Ax,, (sce section 3) rather
than on Au,. This is because the share of displacement produced by the rotations Ag, has very little
influence on these phenomena. Therefore, the displacements Ax, are assumed to be the kinematic
parameters characterizing the structure seismic demand.

Table 6 shows the maximum value of Ax, among the ones detected at all storeys, and the maximum

value of the base shear, normalized with respect to the design base shear, for structures 4, B and C. Each
of them is assumed to be braced with dissipative devices calibrated by the two different criteria discussed
above.

Table 6: Comparison between Push-Over and Dynamic Analysis Results

STATIC ANALYSIS DYNAMIC ANALYSIS

To L2 T
Struct. Displacgment 1 2;)" ...;_'bm Disp;zggment 4;::;' JT?.

{cm) _ {cm) _

A 10 1.50 | 1.40 9.28 1.44 | 124
A, 10 1.17 | 1.23 9.11 133 | 115
B | 10 158 | 1.20 9.83 1.29 | 1.10
B, 10 - | 1.05 1.10 10.2 1.15 1.07
C 10 172 | 1.26 9.75 167 | 123
C, 10 1.282 | 111 10.1 141 | 110

The resuits show that the maximum value of Ax;, for a given law of strength distribution of the
devices, is almost the same for the three structures, attaining the maximum value in structure C and the
minimum in structure B,. The maximum base shear occurs in structure 4 and the minimum in structure
B, again. The values of both response parameters significantly decrease when simultaneous activation of
the dissipative devices occurs. This circumstance is more evident if structures B and B, are compared.

Figure 6 shows the distributions of Ax; along the height of the structures, while Figure 7 shows the
share of total energy dissi;;at_ed by the devices at each storey. These figures point out that, designing
dissipative devices having the same strength at each storey, the share of relative translation Ax; is very
large for the first three storcys, and decreases significantly at the higher storeys (this is more evident for
structure B); morcover, an analogous pattern can be observed for the dissipated &nergy.

By contrast, the simultancous activation of the dissipative devices produces a reduction in the
maximum value of Ax; and a more uniform distribution of this share of relative displacement along the

height, with the maximum beneficial effect for structure B, compared with structure B. Moreover, by
using this more effective criterion of strength distribution, almost all the devices at the different storeys
significantly contribute to the global dissipative mechanism, with reduction in the energy dissipation
demand for the devices at the lower storeys.
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3. Nonlinear Time-History Analysis

The conclusions presented in the previous section are verified in the dynamic field by carrying out a
step-by-step nonlinear analysis of the seismic response of the systems considered, by means of a modified
version of the DRAIN-D2DX program,

The structures are assumed to be subjected to the first 25 s of the SOOE component of the El Centro
(1940) earthquake.

Since the peak ground acceleration for this component is A, 1ux =0.35g and the ordinate of the

normalized elastic response spectrum of this accelerogram for I =17, =0.95 s is very close to that of the
elastic design spectrum previously considered, the results of the dynamic analysis can be compared with
those of the static analysis, at least qualitatively. The values of the Tesponse parameters resulting from
this aynamic approach are shown in the same Table 6, commented on in the previous section. For this
kind of analysis the values of the maximum horizontal top displacement are also shown.

The maximum and minimum values of Ax; are attained in structures C and B,, respectively. The

maximum base shear occurs in structure 4, and the minimum in structure B,. The resuits confirm that
simultaneous activation of the devices reduces the values of both these response parameters.

Figures 8 and 9 respectively show the distributions of the relative displacement share Ax; and of the

share of energy dissipated at the i-th storey E,,/E,, derived using the dynamic analysis. Comparison

with the corresponding Figures 6 and 7 points out that the push-over analysis allows one qualitatively to
predict the distribution along the height of the response parameters.

Finally, the results of the dynamic analysis show that the assumption of the same strength of the
dissipative bracing systems at all storeys is not an advantageous design solution, even though the
favourable effects provided by simultaneous activation of the devices, as confirmed by the dynamic
analysis, appear to be overestimated by the push-over analysis.

CONCLUSIONS

A simplified model, allowing one to predict with good precision the evolution of the deformed shape
of cross-braced multistorey frames equipped with hysteretic dissipative devices and sub]ected to
monotonically increasing horizontal forces, has been proposed.

The model takes the axial deformability of the frame into account, considering that it may
significantly influence the base shear-top displacement relationship, the fundamental period of vibration
and the corresponding first mode 'shape, as shown by some numerical examples.

The model can be used to identify the principal characteristics of the seismic behaviour of the
structure to be examined by means of a push-over analysis. This is because it- makes it possible to
distribute the increases in the equivalent seismic static forces in accordance with the first modal shape
associated with the tangent lateral stiffness matrix of the structure, considering the effects of buckling of
braces in compression and activation of dissipative devices.

At this stage of the study, the model only refers to one-bay cross-braced frames where the hysteretic

behaviour is concentrated ift the dissipative bracing systems. Further investigations will be addressed to
removing these limitations,
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APPENDIX

An approximate evaluation of the lateral stiffness of the columns at the i-th storey of the cross-braced
frame can be obtained by modelling the whole unbraced frame by a single column, affected at each storey
by the sum of the flexural moments of inertia of the storey columns of the fraime. At each storey level,
the equivalent column is provided with a rotationat spring representing the flexural stiffness of the storey
beams. The stiffness of the spring is evaluated by assuming that at each storey the rotation of all the
nodes of the frame is the same. Moreover, in this simplified scheme the inflection point of each column
is assumed at the mid-height, except for the first floor, where the position of the inflection point is
assumed to be the same as for the single column scheme affected only by the first storey, for which it is
determined exactly, '

When the global lateral stiffness of the frame is derived at each storey, the lateral stiffness of each
column can be expressed as

12E7T ,

T"ai (A1)
whete @, is a coefficient reducing the shear stiffness of the column, taking the elastic rotation of the top
and base of the cotumn itself into account.

< —
ki, =
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The coefficients a, are functions of the flexural moments of inertia of the columns and beams, of the

aspect ratio of the frame L/, and of the distribution law of the seismic forces. They can easily be
evaluated by analyzing the simplified structure and remembering that the two columns of the one-bay
frames considered in this work at each storey are made with the same steel profile and are identically

Using the notations previously introduced in the text, the coefficients @; in this case cen be expressed
as follows: ' o

1 L1, 2

i)
LIPS PO il L SR X
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1t is useful to point outthatmeabovementionedmumptionoméming the location of the inflection
point for the first storey columns have to be considered only for evaluating the coefficients @; and not for
the simplified scheme shown in Figure (1a).
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