SOME TYPICAL EARTHQUAKES OF NORTH AND WEST UTTAR PRADESH

A. N. TANDON¹

INTRODUCTION

Most of the destructive earthquakes in Uttar Pardesh occur in the hilly region around Lat. 30°N, and Long. 80°E and are in all probability associated with the thrusts in the middle Himalayas. As a matter of fact a number of shocks exceeding magnitude 5 originate from this region every year and are responsible for its high seismicity. The areas of West Uttar Pradesh located south of the Himalayas are comparatively less seismic but earthquakes of moderate intensity have been reported from the region during recent times These are associated with the Moradabad fault and other unknown faults in the basement rocks below the alluvium. In addition to these strong earthquakes originating in the Western Himalayas, deep focus earthquakes from the Hindukush are often felt over the region but seldom cause any significant damage to structures. Table 1 gives a list of important earthquakes which affected the region duing the past. Data on these earthquakes up to the year 1869 has been taken from T. Oldham's (1883) Catalogue of Indian earthquakes. For the remaining shocks the chief sources of information have been, "The Seismicity of the Earth" by Gutenberg and Richter (1954). The International Seismological Summary, B. C. I. S. (Strasbourg), The Seismological Bulletin of the International Seismological Institute, Edinborough. The epicentre cards issued by U.S.C.G.S. and the Monthly Seismological Bulletin of the India Meteorological Department. The data provided by the table, though useful in many ways, is not sufficient for undertaking a detailed study of the seismicity of the region. It is not possible to correlate this data with any degree of certainty with known tectonic features of the region as some important parameters like the depth of focii and fault plane solutions for most of the earthquakes are not available. Even the location of epicenters lacks the precision required for detailed seismicity studies. In order to help such studies a detailed study of three typical earthquakes which afficted the region during recent times has been undertaken in this paper. All the three earthquakes occured along different fault systems and their study is expected to throw light on the chief characteristics of the faults responsible for their occurrence. These shocks are-

- 1. The Bulandshahar Earthquake of 10th October, 1956.
- 2. The Kapkote Earthquake of 28th December, 1958.
- 3. The Moradabad Earthquake of 15th August, 1966.

METHODS USED FOR DETERMINING THE EPICENTRAL PARAMETERS

.

Epicenter and Origin-time—Epicenters and origin times, depth of focii and magnitudes for all the three shocks has been determined by USCGS, BCIS and ISC from teleseismic data but it was found necessary to redetermine these parameters more accurately using the data of both near and teleseismic stations. Starting with the approximate value of the epicenter as determined on an 18" metal globe the final epicenter and origin time were obtained by the method of least squares as described by Bullen (1959). In the case of the Bulandshahar and Kapkote earthquakes a number of station pairs were available at which the P-wave arrived at the same time and it was possible to check on the results by using the station pair method, which has the advantage of being independent of travel time tables.

^{1.} B-7/50 Safdarjung Enclave, New Delhi-16.

SN Date of occurrence	Brief description of important effects	Epicenter Lat. Long. N E	Origin time	Depth of focus	Mag.
1 1720 July 15	Considerable damage in Delhi, followed by aftershocks.	New Delhi.			<u> </u>
2 1764 June 4	Many houses over- thrown and large number of men and cattle killed.	Banks of Ganges.			
3 1803 May 22		Upper Ganges.			
4 1803 Sep 6	Very violent at Muttra. Extensive damage and earth fissures. Damage in Delhi, followed by aftershocks.	Probably near Muthra along the fault in the Aravalli.			
5 1809	Vishnu Ganga river blocked by landslides.	Garhwal			
6 1816 May 26	Felt in hills and plains of U.P.	Gauhati		,	
7 1825 May 22	Felt sharply at Delhi with rumbling poise	_			
8 1830 Jul 17 9 1831 Oct 24	Smartly felt at Delhi. Last of three earth- quakes in Four months. Felt at Delhi. Lasted a minute. Felt more severaly towards South and Southwest.	Near Delhi.			
10 1831 Dec 25 11 1832 Jul 2	Felt at Loherghat do	Kumaon Kumaon			
13 1832 Sep 23	do	Kumaon			
14 1833 May 30	do	Kumaon Kumaon		·	·
16 1835 Jan 4	Felt at Meerut Felt at Lohaghat				
17 1835 Jan 14 18 1842 Jan 16	Felt at Lohaghat J Felt at Muttra, Main- puri, Jampore Chunari	Kumaon			
19 1842 Mar 5	Felt over West U.P. M Simla, Houses at M Dehra Dun and Mussori damage.	Near Aussori c			
20 1842 June 4	Violent trembling at Delhi, Accompanied by rumbling noise.				

TA	BL	E	l
----	----	---	---

•

¥

•

.

4

1 2	3	4	5	6 7
21 1843 Apr 11	Felt at Hardwar, Landaur, Delhi & Meerut.	Near Mussorie.		
22 1852 Mar 31	Felt over N.W.U.P. Severe at Meerut; Clocks stopped.	Moradabad fault.		
23 1864 Aug 30	Two smart shocks felt at Lucknow. Slight at Patna.			
24 1902 Jun 16		31 N 79 E		
25 1906 Jun 13		31 79		
26 1916 Aug 28	All houses collapsed at Dharchula	30 81	062930	7.5
27 1925 Nov 6		26.5 81.5	192045	51
28 1926 Jul 27		30.5 80.5	072336	6
29 1927 Oct 8		30.5 80-5	133428	6
30 1930 Jun 25		25.0 77.5	004900	5-6
31 1935 Mar 3		29.6 80.4	221559	5–8
32 1935 Mar 15		29.6 80.4	103752	5–6
34 1037 Apr 20		28.4 83.3	061918	6
35 1940 Apr 10	,	30.0 81.5	193255	5-6
36 1945 Jun 4		30.0 81.5	120955	2-0
37 1947 Aug 19		31 2 70 0	120855	5 6
38 1949 Feb 5		31 2 79 9	083520	5.6
39 1952 Nov 8		27.9 82.2	104154	5-6
40 1953 Feb 23		29.5 81.3	004608	6.0
41 1953 Aug 20		27.9 82.2	015825	6.0
42 1954 Sep 4		28.3 83.8	064345	61
43 1954 Sep 4		28.3 83.8	064514	6 <u>1</u> -6 <u>4</u>
44 1950 Uct 10		28.2 77.7	153136	6 1
45 1956 Dec 26 46 1958 Dec 31		30.0 79.9	053438	61
47 1960 Aug 27	Minor property	30.1 /9.9 38 3 77 4	030010	6
	damage at Delbi	20.2 //.4	122028	0.0
48 1961 Dec 24		28.8 81.5	071330	5-6
49 1962 Jul 13	`	30.9 79.6	050109	5_6
50 1962 Jul 14		30.4 79.5	155854	5-6
51 1963 Jan 30		29.4 80.9	103350	5-6
52 1963 Nov 27		30.8 79.1	211040	5.1
53 1964 May 24		30.1 82.1	0050	5.1
55 1064 Cont 6		30.1 80.7	004603	6.2
56 1964 Dec 20		29.0 81.0	201935	5.2
57 1964 Dec 20		27.3 01.3 20 5 01 2	802145	5.1
58 1965 May 13		29 8 80 5	1015150	5.Z
59 1965 Jun 1		27.0 83.0	075230	J.1 5 7
60 1965 Nov 18		29.9 80.3	024128	5.2
61 1966 Mar 6		31.6 80.5	021057	5.4
62 1966 Mar 6		31.6 80.5	021557	6.1

7.6

Some Typical Earthquakes of North and West Uttar Pradesh

1	2	3	4		5	6	7
63 64 65 66 67 68 69 70 71 72 73	1966 Jun 27 1966 Jun 27 1966 Jun 27 1966 Jun 27 1966 Jun 27 1966 Jun 28 1966 Aug 15 1966 Oct 13 1966 Dec 16 1966 Dec 16 1966 Dec 18		29.7 29.8 29.8 29.7 29.7 29.4 28.7 31.0 29.6 29.7 29.6	80.9 80.7 81.0 80.8 81.1 78.9 80.1 81.0 81.0 81.0	104109 104743 104950.0 105918 112143 154337 021534 124242 205214 221249.2 224238		6.1 5.3 5.8 6.0 5.4 5.4 5.4 5.2 5.2 5.9 5.4 5.0
74 75 76 77 78 79 80 81	1966 Dec 21 1968 Jan 5 1968 May 27 1968 May 31 1969 May 3 1969 Mar 5 1969 Jun 22 1970 Feb 12		29.4 30.2 29.7 29.9 30.2 29.2 30.6 29.4	81.0 80.2 80.4 80.0 79.9 81.1 79.4 8 81.6	221059 060240.5 183557 030136 062022 111506 013324 015151	,	5.4 5.3 5.1 5.7 5.3 5.2 5.4 5.4

Magnitude—The magnitudes of the shocks had been determined by a number of stations in the world, but it was redetermined with the help of records of standard Wood Anderson Seismographs of the Indian network of stations. It has been found that the magnitudes so determined are usually about 1/2 unit higher than obtained by other stations. After making due corrections to these values, an average magnitude was worked out for all the shocks.

Depth of Focus—The precise determination of the depth of focus of an earthquake with its focus within the crust is not always possible with the help of seismometric data. Accurate determination is possible only if data of stations located very close to the epicenter is available. Estimates based on teleseismic data or on the basis of phases caused by reflections of waves close to the epicenter often give very divergent results. Macroseismic data can be usefully utilised to give fairly good estimates for the depth. Several empirical formulae using the maximum intensity at the epicenter I_0 , the Magnitude of the shock M, and the radius of perceptibility r are available for this purpose. Gutenberg and Richter (1942) gave the following two formulae—

$$6 \log \frac{r}{h} = Io - 1.5$$

3.6 \log $\frac{r}{h} = M - 2.2$

Karnik (1964) and Shebalin (1961)

have given the following empirical formulae:

$$M=0.6 I_0+\log h+0.4$$

 $M=0.7 I_0+2.3 \log h-2.0$

The depth of focii in all the cases was obtained with the help of the above four relations and checked with the help of seismometric data whereever possible.

FAULT PLANE SOLUTIONS

Byerly's (1938) method as modified by Hodgson and Storey (1953) has been used in finding the strike dip and the nature of faulting. The method uses a sterographic projection with the anticenter f as the pole in which the directions of first motion are plotted at their respective azimuths and at the calculated value of the extended distance for the appropriate depth of focus. The compressions and dilatations are then separated by two circles passing through the epicenter and satisfying the condition of orthogonality. One of the circles represents the fault plane and the other the auxiliary plane. It is not possible to distinguish between the fault plane circle and the auxiliary circle and the decision about the correct solution is generally based on geological and macroseismic evidence. In some cases where observations are lacking it is possible to draw only one circle but the other can be drawn by taking the orthogonality criteria into consideration. Difficulties are also created by inconsistent observations. The strike of the fault is given by the tangent to the circle at the epicentre and the dip δ is calculated by the formula $\delta = \tan^{-1} 2r$ where r is the radius of the circle. If the fault plane circle encloses compressions, it is a normal fault, but if it encloses dilatations it is a reverse or thrust fault. In cases where the two circles interesect at right angles the type of motion is mainly of the strike slip type and if they touch tangentially it is entirely dip slip. Cases in between the two have both strike and dip slip components.

THE BULANDSHAHAR EARTHQUAKE OF 10th OCT. 1956

This earthquake occurred at about 2100 hours and was felt throughout North West Uttar Pradesh and adjoining area and caused minor property damage at Buland

Shahar and Khurja. It was strongly felt at Delhi where a large number of people rushed out into the open for safety. Minor cracks also appeared in a few buildings. A preliminary report describing the macroseismic effects of the earthquake has already been published by Dr. A.G. Jhingran, according to which "the shock was perceptible over a substantially wide region which according to newspaper reports included Chandigarh, Ambala, Jaipur, Gwalior. Dholpur, Alwar, Aligarh, Kanpur and Lucknow." The earthquake was most destructive in and around the towns of Bulandshahar and Khurja where a number of kutcha buildings were destroyed and some pucca buildings developed cracks. The worst affected village were Dhansura. Dungarpur, Belona and Jhaghar to the west of Kali Nadi. It is clear that the maximum intensity in the Modified Mercalli Scale exceeded VII and reached VIII close to the epicentre. In Delhi the intensity was close to VI. Fig. 1, which is based on newspaper reports, gives the approximate delineation of isoseismals V, VI and VII and the limit of perceptibility.

Table 2 gives the relevant data used in determining the epicentre, origin time and the fault plane solution of the earthquake. Jeffreys and Bullen Travel Time Tables (1940) have been used while computing the parameters according to methods outlined earlier. The final results obtained by the least square method are

Epicenter Lat. 28.3°N, Long. 77.8°N

Origin time 15h 31m 15.5s GMT

It will be seen from Table 1 that the P wave arrived simultaneously at a number of pairs of station located in widely different azimuths. The epicenter could thus be determined also by the station pair method without the help of any travel time tables. The coordinates of the epicenter thus obtained are Lat. 28.4°N, Long. 77.9°E which differ from the earlier result by only 0.1 degrees.

Magnitude—The magnitude of the shock as determined from the records of standard Wood Anderson seismographs installed at the Indian observatories worked out as follows—

Shillong	6.8
Vizianagram	7.0
Bokaro	6.8
Chatra	7.3

giving an average value of nearly 7 which seems to be on the higher side. The magnitude reported by some foreign stations like Kiruna and Uppsala was 6.4 and 6.5 respectively. A value of 6.5 for the magnitude of this shock seems to be reasonable and has been adopted.

Depth of focus—The presence of large surface waves on all seismograms showed that the focus was not deep seated. In the seismograms of Chatra, Shillong, Vizianagram, Bombay and Poona a prominent phase could easily be recognise 6 to 7 seconds after the first arrival. The station bulletins of the observatories at Uppsala, Skalstugar Stuttgart, Messtelten, Besancon and M Bor also reported a prominent phase 6, 5, 7, 6, 4 and 7 seconds respectively after P. If this phase is interpreted as P the depth of focus is about 15 kms.

The relevant macroseismic data about the earthquake is

Magnitude	-6.5
Max. Intensity Io	=VIII
Radius of perceptibility	=300 kms.

The values of depth of focus obtained according to the different formulae given earlier are-

S.N.	Station		Observed	Degrees	Azimuth	Residue	Comp.	Extended
			P-time		Z	0-C	or	distance
			(GMT)			(sec)	dilatation	
1	. 2		3	4	5	6	7	8
1	New Delhi	iP	153151	0.57	320	+4		· · · · · · · · · · · · · · · · · · ·
2	Dehra Dun	i	153237	2.02	005	+6	D	.094
3	Bokaro	i	153344	8.47	119	+2	С	.261
4	Chatra	i	153336	8.43	97	-6	С	.260
2	Queeta	е	153357	9.70	284	-2	D	.297
6	Poona		153408	10.35	202	0	С	.320
7	Bombay	e	153409	10.43	207	0	С	.323
8	Vizianagram	1	153420	11.35	151	—2	D	.352
9	Shillong	e	153439	12.85	99	3	С	.402
10	Namangam		153450	13.63	340	-2		
11	Tashkent	e	15353.5	14.75	334	4	(D)	.461
12	Frounse		153506	14.78	350	-2	•	
13	Madras	е	153513	15.40	171	—3	D	.477
14	Tiflis		153750	29.97	306	+5.3		
15	Irkutsk	e	153759	31.03	32	+2	D	1.280
16	Sverdlovsk		153758	31.01	341	+1		
17	Ksara		1538 42	36.15	290	+1		
18	Jerusalem		153849	36.62	286	+4	(C)	1.377
19	Simpfersops	e	153905	38.29	308	+1	`D	1.400
20	Moscow	е	153911	39.68	325	0		
21	Helwyn	i	153919	40.43	284	+2	D	1.428
22	Kandilli	е	153926	41.58	301	-1		
23	Leningrad	e	153954	44.98	328	Õ	(D)	1.492
24	Matsushiro		154041.6	50.94	59	-+-1	Ъ	1.492
25	Upsala		154041	51.07	326	<u>–</u> 1	D	1.610
26	Kiruna		154049	51.92	336	+1	D	1.630
27	Praha	ei	154050	52.03	313	+1		
28	Messima	i	154050	52.13	298	Ō	С	
29	Jena	e	154103	53.83	314	+1	_	
30	Skalstingan	i	154105	54.18	330	Ō	D	1.683
31	Firenze Xim	i	154106	54.59	311	-2		
32	Tananairine	е	154114	55.32	216	$+\bar{1}$	(D)	1.711
33	Astrida	i	154115	55.43	244	+1	Ď	1.714
34	Stuttgart	i	154114	55.50	316	Ō	D	1.716
35	Lwiro	e	154118	55.97	246	Õ	Ď	1.726
36	Karlsruke	е	154119	55.99	312	+1	ñ	
37	Strasbourg	е	154121.5	56.47	312	Ō	Ď	1 740
38	Besancon	i	154145	57.82	310	-1	Đ	11110
39	Kew	i	154154	61.22	316	ō	$\tilde{\mathbf{D}}$	1 870
40	Relizane	е	154215	64.37	298	ŏ	-	1.070
41	Rathfarxham Cas	lle	154216	64.48	319	· ·	D	
42	Tammanrasset		154216	64.58	283	1	Ď	1 97
43	Granada			67.2	301	-	Ē	2.27
44	Pretoria	i	154303	71.85	226	+1	Ď	2 18
45	Pietermaritzberg	i	154311	73.28	222	ίÔ.	č	2 23
46	Kumberkv	i	154327	75.9	226	+1	č	2 33
47	Rabaul	e	154341	78.35	101	+2	\sim	ل ل ل . بد
48	Grahamstown	i	154310	78.1	222		С	2 40
49	College	i	154350	80.62	18	-1	č	2.511

TABLE 2Earthquake of 10th October 1956

I.

 $\begin{array}{l} h=20 \text{ kms (Karnik)} \\ h=20 \text{ km (Shebalin)} \\ h=25 \text{ kms} \\ h=20 \text{ kms} \end{array}$ Gutenberg.

A value of 20 kms for the depth of focus seems to be reasonable.

FAULT PLANE SOLUTION

In Table 1 column 7 the direction of motion of the first arrival at some Indian and foreign stations has been given. These have been plotted at the appropriate azimuths and extended distances in fig. 2. Using the method outlined earlier the compression

Fig. 2. Fault plane solution of Bulandshahar earthquake of October 10, 1956

and dilatations have been separated by two circles, both of which could represent the fault plane circle. Out of a total of 36 observations two observations, that of Irkutsk and Matsushiro do not fit.

If the circle A represents the fault plane it would mean a reverse fault striking N 20 E and dipping towards N290°E at an angle of 79°. The motion was almost strike slip with very little dip component.

The circle B represents a reverse fault striking N103E and dipping towards N194E at an angle of 72°. The motion was predominently strike slip. Considering the trend of the Aravalli below the alluvium in the Gangetic plains the solution A seems more likely.

THE KAPKOTE EARTHQUAKE OF DEC. 28, 1958.

The greatest damage to structures due to this shock was caused at Kapkote, a small town about 70 miles from Almora. Here about a dozen houses are reported to have been razed to the ground. The NES Blocks and the State Allopathic Hospital suffered serious damage. Newspaper reports indicated that the shock was strongly felt at Almora, Mukhim, Lakhpal, and Dehradun. At Moradabad it is reported to have knocked down some telephone poles and moved furniture while at Dehra Dun traffic came to a standstill. The other places from which the shock was reported felt include Pilibhit, Ambala, Simla, Chandigarh, Ranikhet, Meerut, Mukteshwar, Najibabad, Hissar and Lucknow. The shock was felt only mildly at Delhi generally by persons on top of buildings. Some persons ran out of their houses as doors and windows rattled.

Within the meizoseismal area a few earth fissures and landslides were reported. Considering this and the damage to structures close to the epicenter it is surmised that the maximum intensity reached was certainly MM-VIII. Since the shock was felt in Delhi and Lucknow, the radius of perceptibility must have been close to 350 kms.

Table 3 gives the relevant data used in determining the epicentre and origin time by the method of least squares. Residuals of P are given in column 4 and the direction of first motion of the vertical component in column 7. The final results regarding the epicenter and the origin time are :

Epicenter : Lat. 30°00' N, Long. 79°58' E Origin time : 05 h. 34 m. 42.0 s. GMT.

Magnitude—The magnitude of the shock as computed from the maximum trace amplitude recorded by Standard Wood-And erson Seismographs of Indian stations was as follows :—

Shillong	6
Tocklai	6 1
Bokaro	6 1
Port Blair	61
Vizianagram	7

giving an average value of about $6\frac{1}{2}$. The magnitude reported by some foreign stations reported by some foreign stations was as follows—

Uppsala 6.4, Praha $6\frac{3}{4}$, Matsushiro $6\frac{1}{2}$, Moscow 6, Kew $6\frac{1}{2}$. Considering all these facts, a value of $6\frac{1}{2}$ has been adopted for the magnitude.

a

DEPTH OF FOCI

Since the phase \overline{P} was clearly recorded at all the Indian stations located within $\Delta = 10^{\circ}$, it was obvious that the focus lay in the granitic layer. A prominent phase was also recorded about 12 seconds after the first arrival at most of the Indian stations. Assuming this phase to be \overline{sP} the depth of focus comes out to be about 30 kms. This is also corroborated by the fact that travel times appropriate for a depth of 33 kms. gave the best fit in the epicentral determination.

Depth of focus as determined from macroseismic data gave the following values-

h=27.5 kms. (Gutenberg's formulae) h=22 km.

h=22 km. Karnik h=18 km. Shebalin ÷

ы

\$

÷

S.N.	Station	Observed P time (GMT)	Degrees	Azimuth Z	Residual O-C (Sec)	Comp. or Dilatation	Extended distance
1	2	3	4	5	6	7	
	Dahra Dun	062514	1 70			_ <u>_</u>	
2		052525	1.70	285	+4.3	D	.016
2	Lahora	053533	5.33	210	+1.7	D	.084
4	Chatra	053636	5.02 7.05	290	+1.0		.142
5	Bokaro	053638	7.05	110	+0.5	D	.211
6	Lhasa	053702	0.07	138		D	.244
7	Queeta	053702	9.07	272	+0.2	č	. 293
Ŕ	Shillong	053723	11.20	100	-3.9	č	252
ğ	Andidian	053735	12 40	320	-3.4	C	. 353
10	Hyderabad	053736	12.40	195	-4.0	л	
iĭ	Karachi	053737	12.57	249	0.2	D	
12	· Poona	053738	12.30	246		D	200
13	Stalingabad	053738	12.70	316	-4.0	D	. 390
14	Namangan	053741	12.00	331	-3.0		
15	Bombay	053742	12.05	211	4.0		
16	Chittagong	053745	13 15	110			
17	Tashkent	053800	14 23	326			
18	Madras	053837	16 07	177	-3.1	Л	525
19	Kunming	053921	20.73	06	-0.7	C C	. 333
20	Chengtu	053922	20.75	70	-1.1	č	.090
21	Port Blair	053937	20.75	142	-0.3	č	1 01
$\bar{2}\bar{2}$	Pastow	054021	26.60	55	++ 0 1 0	č	1 160
23	Makhatchkulu	054038	28.05	306	71.7	C	1.107
24	Goris	054042	29.07	208	<u> </u>		
25	Sverdolovsk	054050	30.06	330	-0.2		
26	Cantor	054055	30 57	02 02	-0.2 0.2	C	1 260
27	Tibilisi	054056	30,60	301	+0.2		1.200
28	Peking	054100	31 12	58	+1.0	C	1 777
29	Nanking	054118	33 22	74	+0.3 0	č	1.272
30	Zose	054138	35 37	75	⊥1 6	č	1.313
31	Jerusalem	054158	38 00	282	-0.6	C	1.550
32	Changchum	054201	38 33	53	-0.3	C	1 201
33	Simpferspol	054205	38 80	305	-0.3	č	1 208
34	Moscow	054210	39 41	323	-0.2	C	1.390
35	Vladivostok	054241	43.07	55	± 0.5		
36	Pulkovo	054252	44.50	327	10.5		
37	Yakutsk	054258	45.33	28	06		
38	Lwow	054305	46.08	313	± 0.4		
39	Apatity	054309	46.48	337	-+13		
40	Matsushiro	054323	38.50	63	-0.6	,	
41	Upsala	054340	50.75	325	-2.8	С	1 594
42	Kuruna	054345	51.17	335	+1.0	č	1 603
43	Rome	054407	54.62	302	-2.6	č	1 684
44 🧠	Magadan	054414	55.03	33	+1.4	-	
45 👘	Stuttgart	054417	55.81	311	-1.2	С	1.714
46	Lwiro	054438	58.40	245	+1.4	U	**/14
47	Kew	054438	61.33	315	-2.7	С	1 862
48	Resolute	054624	75.52	358	0.8	č	2 298
49 \cdots	College	054640	78.41	19	-1.0	÷	2.270
50	Brisbave	054742	90.22	121	+1.6		
51	Hungry Hoose	054828 1	01.40	14	-0.6	-2	

TABLE 3Earthquake of 28th Dec. 1958

.

These formulae give an average value of about 22 kms. Considering the value of 30 kms obtained from seismometric data, a value of $h=25\pm$ has been adopted for the depth.

Fault Plane Solution—Column 7 of Table 3 gives the direction of the first motion in the vertical component. These have been plotted on an sterographic projection at the proper azimuths and extended distances as shown in fig. 3. Two circles A

Fig. 3. Fault-plane solution of Kap Kote earthquake of December 28, 1958.

and B have been drawn separating the compressions and dilatation according to the method outlined earlier. It was possible only to draw the circle A while the circle B has been drawn with the help of the orthogonality criteria. No other circle would satisfy the criteria. There are about 7 observations in the North-west sector which do not fit in with the surrounding data. Both the circles A and B can represent the fault plane. In either case the region the circle B appears to be correct solution which would mean a thrust fault striking N 282 E and dipping towards N 12 E at an angle of 36°, the motion during the earthquake being entirely dip slip.

ŝ

THE MORADABAD EARTHQUAKE OF 15TH AUGUST 1966

This earthquake occurred on the morning of Aug. 15, 1966 and was felt extensively in West Uttar Pradesh. In Moradabad about 30 persons were injured, 15 of them seriously in house collapses following the earthquake. A few well built houses also suffered minor damage. Cracks also appeared in some buildings in Bareilly and Meerut. The shock was also reported to have been felt at Agra. Delhi, Nainital, Simla Dehra Dun and Mukteshwar. Considering all these reports the maximum intensity in the epicentral region was about VI M.M. and the radius of perceptibility about 250 kms.

The epicentral parameters given by international organisations were as follows-USCGS Epc: 28.7 N, 78.9 E; h=53 Kms.; Mag: 5.6 0=02h 15m 34.4s GMT

I. S. S. Epc: 28.67 N, 78.93 E; $h=5\pm8$ kms.

Mag: 5.6, $O=02h 15m 28.0\pm1.3s$

The epicenter was redetermined taking into account the data of Indian stations and it was found that shifting the epicenter about 10 kms. to the south of the USCGS epicentre would satisfy the Indian data better. The magnitude as determined by the records of Indian stations also worked out to be higher than that determined by USCGS. The epicentral parameters finally adopted are Epc: $28.6^{\circ}N$, $78.9^{\circ}E$, O=02h 15m 33.8s, Mag = 5.8.

Depth of focus—The depth of focus determined by USCGS and I. S. S. was 53 kms and 5 kms and hence no final conclusion could be drawn. An examination of the records of Indian stations showed that surface waves were well recorded and the phase P was clearly recorded at stations located within $\frac{1}{2}\Delta = 10^{\circ}$. This showed that the focus was located within the granitic layer. Phases like pP or sP could not be clearly identified and hence the only method possible for the assessment of the depth of focus depended on macroseismic observations.

As mentioned earlier the maximum intensity Io was VII M.M. and the radius of perceptibility was about 250 kms. The various formulae mentioned earlier give the following values for h

$$\begin{array}{l} h=16 \text{ (Karnik)} \\ h=18 \text{ (Shebalin)} \\ h=30 \\ h=25 \end{array}$$
 (Gutenberg)

giving an average of about 22 kms.

4

Fault Plane Solution—The data used in determining the direction of faulting is given in Table 4. In fig 4 the compressions and dilatations have been plotted at the

	1900									
S.N.	Station	Observed P-time (GMT)	Degrees	Azimuth Z	Residue O-C (sec)	Comp. or dilatation	Extended distance			
1	2	3	4	5	6	7	8			
1 2 3 4 5 6 7 8 9 10 11 12	New Delhi Jwalamukhi Nurpur Mukerian Chatra Shillong Khorog Poona Bombay Dushanbe Przhevalsk Semipalatinsk	i 211559.0 i 21632 i 21640.3 i 21747 iP 21722.6 i 21820 e 21805 i 2188.0 i 21809.0 i 21832.0 i 21846.0 i 22022.4	1.51 3.90 4.48 4.35 7.52 11.94 10.75 11.11 11.22 12.99 13.79 21 72	271 325 325 320 (102) 327 206 211 322 358 02	+3.5 -0.5 -2.5 -3.8 -0.2 +0.7	C DSE DSE D W D C C C C D	0.13 .133 .149 .143 .231 .374 0.333 0.346 0.348 0.406 0.431			

TABLE 4 Moradabad Earthquake of Aug. 15, 1966

Bulletin of the Indian Seciety of Earthquete Technology

1	2	3	4	\$	6	7	8
13	Port Blair	1 12020	21 76	140		8	001
14	Shillong	i 22036.2	23.07	279	+1.0	ň	1 073
15	Tehran	i 22040.5	24:30	294	-6.6	• 5 -	31.114
16	Tabriz	• 22129.0	28.67	298	+1.4	. D .	1.228
17	Knovabad	1 22133.0	21.19	303	+0.8	D	1,242
15	SVORULOOAK	1 22148.0	30.95	340	+0,3	D	1,127
19		1 22255.0	38,08	301	+0.8	D	. 1.400
20	St Daraskavi	0 22233.0	38,85	307	-0.6	D	1.40
22	Pulltovo	1 24341.0		276	+0.0	D D	1:482
23	Campulong	e 22348 0	45 22	- 040 101	7-13.2	D n	1.494
24	Vamos	i 22359.1	46 39	202	19.9	n	1.497
25	Athon's	i 22357.1	46.48	296	-0.5	ñ	1 512
26	Yakutsk	i 2242 .0	46.93	30	+1.2	Ď	1.526
27	Apatity	i 2245 ,0	47.40	338	+0.5	. Ē	1.535
28	Kajani	i 2249 .3	47.89	333	+0.8	D	1.54
29	Ninmijaur	i 22410.0	48.04	327	+0.4	D	1.547
30	Vaisamata	1 22414.6	48,91	297	-2.0	D	1.54
20	Clacow	1 22417.0	48,95	313	+0.2	<u> </u>	1.565
11	Sedenbula	1 224214	49.04	340	+0.3	Ď	1.576
34	Kevo	i 22421.9	49.00	330	+4.3	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	1.577
35	Tihu	i 22429 0	50 80			, P	1.398
36	Vienna	1 22435.0	51 27	210		ň	1.005
37	Uppsala	i 22433.9	51.32	325	-0.8	D D	1.67
38	Karlskrona	i 22438.1	51.96	321	-1.6	Ď	1.630
39	Kuuna	i 22440.0	51.99	336	+0.2	$\sim \tilde{\mathbf{D}} \sim 0$	1.631
40	Yuzno-Sakha			2 a 11 - 2	•	· · · · · ·	
. 41	Linsk	1 22442.0	52,14	51	+0.8	C	1.01
41	Transpice	1 22444.0	52.43	313	+0.7	D	1.64
42	Vernerske Uora	1 22448.0	53.00	338	+0.2		1,656
44	Maxa	i 22440.0	54 28	51Z 21A			1.656
45	Skalstugan	i 22457.0	54 36	330			1.080
46	Kongoberg	i 2254 .2	55.32	325			1.009
47	Karlaruhe	e 22514	. 56.48	312	L ŘÍ	Ξ́ρ.	1.741
48	Lwiro	i 22517.4	57.02	246	4.1	Ď	1.754
~~ 49 ~~``	Dourbes	i 22531.3	58,81	314	+2.0	D	1.802
50	Carchi	i 22538,2	63.28	- 34	-1.3	D	1.844
21		1 22545.0	91.25	. 730	-1.4	D	1.871
- 34. 52	Nord	1 22333.3	and the second second	<u>57</u>	-+0.5	$\mathbf{D} = \mathbf{D}$	1.910
	Renkin Hill	1 22004.0		191 204	0.5	D	
55	Tammanragnit	1 22613 0	65 45	400	-1.0	- P	
56	Alert	a 22625.0	67.49	355	-1.2	K	
57	Valentia	i 22626.7	67.54	318	-01	ň	3 0.60
58	Autrayo	i 22635.0	68.67	231	+0.4	B	2 080
59	Ifrane	i 22644.0	70.22	298	+0.1		2.135
60	Kalginli	i 22649,1	71.69	142	-3.7	D.	2.180
61	Avervios	1 22654.6	72.08	299	-0.5	Ð	2.192
02 \	warramanga	1 00/01 0	70 - 0				,
61	Array	1 24034.5	72.10	126	-1.0	D	2.192
64	Na Da Bondiana	1 22039.0	76 40		-0.7	Ď	2.215
65	Windbock	i 22737 A	78 20	292	**13¥	C .	2.347
66	Charter Towns	1 22745 4	81.06	430	TV./	D D	9 622
67	Fromsher Bay	c 22801	84.37	346	-0.8	ň	2.555
68	Baler Lake	e 22816	87.24	358	Ő.Ő	Ď	2.782
	a an	and the second	المفيحات مير أمهاده الميطور مردا وتطورون	and a second rest the second present		and the second	the second s

жы. 44

43:

<u></u>,

appropriate azimuth and extended distance on a stereographic projections. Circles A and B which satisfy the orthogonality criteria separate the compressions and dilatations. Any of the two circles could represent the fault plane. If the circle A represents the fault plane it would mean a normal fault striking about E-W and dipping towards south at an angle of 50°. The motion during the earthquake was predominently strike slip (anticlockwise). If the circle B represents the fault plane it would mean a normal fault striking N 343 E and dipping towards N 83 E at an angle of 70°, the motion being predominently strike slip (clockwise). The solution A agrees generally with the direction of the Moradabad fault (near Moradabad) as discovered by the Oil and Natural Gas Commission, and is therefore the more probable solution.

Fig. 4. Fault plane solution of Moradabad earthquake of August 15, 1966.

Conclusion—Table 5 gives a summary of the results obtained for the three earthquakes studied in this paper. **TABLE 5**

Date	Epicentre Long. Lat °N °E	Origin time G.M.T. h. m s.	Mag	h kms.	Io	r kms	Strike	Dip	Dip Dir.	Type of motion
10.10.56	28.3 77.8	153115.3	6.5	20	VIII	300	N20E	79°	N290E	Reverse strike slip.
28.12.58	30 79°58	053442.0	6.5	25	vm	350	N282E	36°	NI2E	Thrust DipSlip.
15. 8.66	28.6 78.9	021533.8	5.8	22	VII	250	N270E	50°	N180E	Normal Strike slip.

The results summarised in Table 5 confirm that earthquakes in North and West Uttar Pradesh mainly occur along three tectonic features as described below-

(1) The NW-SE aligned thrust faults of the Himalayas almost parallel to the trend of the Himalayas in the region. These are characterised by a predominently dip-slip type of faulting along faults dipping towards NNE to NE at low angles. The focal floors are close to the base of the granitic layer in the region i.e. about 25 to 30 kms deep. The largest number of shocks occur close to Lat 30°E and long. 80°E and the maximum magnitude has never exceeded 7.5.

(2) Among the transverse faults which meet the Himalayas at right angles the Moradabad fault passes through the region and has shown recent seismic activity. The trend of the fault close to Moradabad as evidenced by the earthquake of 15.8.66 is almost E-W and it dips at an angle of about 50° towards south. The motion along the fault during earthquakes is predominently strike slip. Historical records also reveal that the fault has been active in the past but the magnitude has never exceeded 6.0. The depth of focil is around 20 kms and appears close to the base of the granitic layer.

(3) The earthquake of 10th Oct 1956 occurred along a fault striking NNE-NE which is almost parallel to the trend of the Aravallis below the Indogangetic alluvium in the region. The fault appears to be a reverse fault dipping rather steeply towards NW and the motion predominently strike slip. Historical records show that a destructive earthquake occurred close to the town of Muttra and is located to the southwest of the epicentre of this shock. It is very probable that this earthquake also originated along the same fault. The occurrence of these earthquakes confirms the active nature of this fault along which earthquakes may occur in future. The depth of focus as revealed by the earthquake under study seems to be around 20 kms which too is close to the base of the granitic layer. The highest magnitude was probably associated with the Muttra earthquake of 1803 and close to 7.

Acknowledgement—The author is thankful to the Council of Scientific and Industrial Research for financial aid and to the Director General of Observatories for making available data and records needed for the study.

REFERENCES

Bullen, K. E., "Introduction to the theory of Seismology (Second Edition), Cambridge University Press 1959.

- Byerly, P., "The earthquake of July 6, 1938, Amplitudes and first motion", Bull. Seism. Sec. Am. 28, 1938, pp. 1-13
- Hodgson, J. H. and Storey, R. S., "Tables extending Byerly's fault plane techniques to earthquakes of any focal depth, "Bul. Seism. Soc. Am 43, 1953, pp. 49-61.
- Gutenberg, B and Richter, C. F., "Earthquake magnitude, intensity, energy and acceleration" Bull. Seism. Soc. Am., 32, 1942 pp. 163-191.

¢

Gutenberg, B and Richter, C. F., "The Seismicity of the Earth," Second Ed. Princeton Univ. Press New Jersey, 1954.

Karnik, V., "Magnitude-frequency relation and seismic activity in different regions of the European area"; Bull. Int. Int. Seism. Earthq. Engg. 1, 1964, pp. 9-32.

Oldham, T., "Catalogue of Indian Earthquakes", Memoirs Geol. Survy. Indian, 19, 1883, pp. 8.

Shebalin, N., "Earthquakes in USSR, Ed. Acad. Seis, USSR, 1961.