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ABSTRACT 

 This paper derives a wave-function series expansion solution for the diffraction of incident plane SV 
waves by an underground circular cavity in a saturated poroelastic half-space. The effects of the incident 
frequencies, incident angles, boundary drainage, porosity, and Poisson’s ratio on the diffraction of 
incident plane SV waves are discussed. It is shown that, depending upon the incident angles, the surface 
displacement amplitudes near the cavity in dry and saturated poroelastic half-spaces are very different, 
and large phase shifts can be observed. The Poisson’s ratio is also an important factor, and has a larger 
effect for the undrained saturated than for the drained saturated half-space. Large pore pressures are found 
near and around the cavity, depending strongly upon the incident angles. As the porosity increases the 
pore pressure increases significantly but its variations become smoother and more complicated as the 
frequency increases. For large porosity, the effect of the drainage condition is significant, and for the 
same porosity the surface displacement amplitudes near the cavity in the undrained are larger than those 
in the drained saturated half-space. 
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 The response of an underground cavity to incident seismic waves is one of the important topics in 
earthquake engineering. It may be evaluated either by an analytical wave-function series expansion 
method or by numerical methods. Numerical methods may include, for example, the finite difference, 
finite element, boundary integral equation, or discrete wave number methods. The advantage of the 
numerical methods is that they can be applied to a cavity of arbitrary shape. However, analytical methods 
continue to be essential in exploring the physical nature of the problems, and also for checking the 
accuracy of the numerical methods. Analytical methods have been used to obtain solutions for a few 
simple elastic cases: circular tunnels excited by plane SH waves (Lee and Trifunac, 1979) and circular 
cavities excited by plane P and SV waves (Lee and Karl, 1992, 1993; Davis et al., 2001). All of these 
solutions have been obtained for the case of homogeneous elastic half-space. 
 Biot (1956a, 1956b, 1962) proposed a theory of wave propagation in a saturated poroelastic medium 
and demonstrated the existence of two compressive waves. The second P wave is generated by the 
relative motion between the solid and fluid phases. Many studies of wave propagation in saturated 
poroelastic media based on Biot’s theory have been carried out—e.g., Berryman (1980, 1981, 1985), 
Deresiewicz (1960, 1961, 1962, 1964a, 1964b, 1965), Deresiewicz and Rice (1962, 1964), Deresiewicz 
and Skalak (1963), Deresiewicz and Wolf (1964), Deresiewicz and Levy (1967), Lin et al. (2005), Paul 
(1976a, 1976b), Philippacopoulos (1988, 1997, 1998), Prevost (1985, 1987), Santos (1986), Santos and 
Orena (1986), Santos et al. (1990, 1992), Senjuntichai and Rajakapse (1994), Theodorakopoulos et al. 
(2001a, 2001b, 2004), Theodorakopoulos (2003a, 2003b), Theodorakopoulos and Beskos (2003), 
Vardoulakis and Beskos (1986), Yang and Sato (2001), Zienkiewicz et al. (1980), and Zienkiewicz and 
Shiomi (1984). Lin et al. (2005) studied the effects of boundary drainage on wave propagation in a 
saturated half-space. However, it should be noted that to date there are few analytical solutions in the 
literature for cavities in a saturated poroelastic half-space. 
 Based on Biot’s theory, this study presents an analytical solution for the diffraction of incident plane 
SV waves by an underground circular cavity in a saturated poroelastic half-space by using the wave-
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function expansion method. The solutions are presented in terms of frequency, incidence angle, porosity, 
boundary drainage, and Poisson’s ratio. 

THE MODEL 

 The model considered in this paper consists of a circular cavity embedded in a saturated poroelastic 
half-space as shown in Figure 1. The problem to be solved is a plain-strain problem. The cavity is 
centered at 1O , with radius a , and at depth h  below the half-space surface. Both the rectangular and 
polar coordinate systems, with centers at 1O , are defined and used. Let O  be the point on the surface of 
the half-space directly above the center 1O  of the cavity. With O  as the origin, another set of rectangular 
and polar coordinate systems can be defined. 

 
Fig. 1  The model 

1. Biot’s Theory of a Poroelastic Medium 

 Biot’s wave equations are for a porous medium in which the solid frame is isotropic and elastic, and 
the pore fluid is allowed only to have dilatational deformation. Those equations can be expressed as 
follows (Biot, 1956a, 1956b; Deresiewicz, 1961): 

 
( ) ( )

( ) ( )

2
2 2

sat 11 122

2
2 2

12 222

ˆ( 2 )

ˆ             

Q b
t t

Q R b
t t

λ µ φ ρ φ ρ φ

φ ρ φ ρ φ

∂ ∂
+ ∇ + ∇ Φ = + Φ + −Φ

∂ ∂
∂ ∂

∇ + ∇ Φ = + Φ − −Φ
∂ ∂

 (1) 

 
( ) ( )

( ) ( )

2
2

11 122

2

12 222

ˆ

ˆ0       

b
t t

b
t t

µ ψ ρ ψ ρ ψ

ρ ψ ρ ψ

∂ ∂
∇ = + Ψ + −Ψ

∂ ∂
∂ ∂

= + Ψ − −Ψ
∂ ∂

 (2) 

where φ  and Φ  are P-wave potentials for the dry frame and the pore fluid, respectively; ψ  and Ψ  are 
S-wave potentials for the dry frame and the pore fluid, respectively; satλ , µ , Q , and R  are the elastic 

moduli for a saturated solid-fluid system; 11ρ , 12ρ , and 22ρ  are the dynamic mass coefficients; and b̂  is 
a dissipative coefficient. In a porous medium saturated with inviscid fluid, the wave equations become 
non-dissipative—i.e., b̂  = 0, due to the lack of fluid viscosity. 
 The dynamic mass coefficients can be described as follows (Berryman, 1980): 
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 ( ) ( )11 ˆ1 1s fn nρ ρ γ ρ= − + −  (3) 

 ( )12 ˆ 1 fnρ γ ρ= − −  (4) 

 22 ˆ(1 )f fn nρ ρ γ ρ= + −  (5) 

where n  is the porosity, sρ  is the density of the solid material, fρ  is the density of the fluid, and γ̂  is 
the coefficient for induced inertia by solid-fluid interaction, which depends upon the shape of the solid 
particles—e.g., γ̂  = 0.5 for spherical particles (Berryman, 1980). 
 Biot and Willis (1957) correlated the elastic moduli with experimental measurements of porosity, 
compressibility of the solid grain, compressibility of the (solid) dry frame, and with compressibility of the 
fluid, in which shear strength of the porous material is provided by the frame and is not affected by 
saturation with the fluid (µ  = dryµ  = satµ ). Thus, the elastic moduli can be expressed as 
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where µ  is the shear modulus of the frame material or skeleton; dryλ  is its Lamé constant; v  is its 
Poisson’s ratio; and dryK  is its bulk modulus, with 

 ( )( )dry cr cr cr1 / gK K n n K K= + − −  (10) 

Further, gK  is the bulk modulus of solid grains, fK  is the bulk modulus of fluid, crn  is the critical 

porosity, and crK  is the critical bulk modulus of the frame material. 
 There are two P waves in the saturated medium, with their velocities given by (Deresiewicz, 1960) 
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 The general solution of the P waves for the solid frame is 
 1 2φ φ φ= +  (12) 

and that for the P waves of the pore fluid is 
 1 2 1 1 2 2f fφ φΦ = Φ +Φ = +  (13) 

where 1f  and 2f  are given by 
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 The velocity of the S wave in the saturated medium is 
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and the general solution for the solid frame is 
 ψ3f=Ψ  (16) 

with 

 12
3

22

f ρ
ρ

= −  (17) 

2. The Incident, Reflected, and Scattered Waves 

 Consider an incident, plane SV wave with frequency ω  and incident angle βθ , which can be 
expressed in exponential form as 

 ( ) ( )( ) , exp i sin cosi x y k x yβ β βψ θ θ = −   (18) 

with wavelength ββ πλ k/2=  and wave number ββ ω ck /= . Here, “i” is the imaginary unit. The time 
factor exp( i )tω−  is understood and is omitted here and henceforth. 
 In the presence of the half-space surface without the cavity, the reflected PI waves, PII

( ) ( )( )
1 1 1 1 1, exp i sin cosr x y a k x yα α αφ θ θ= +  

 waves, and SV 
waves are generated as a result of the incident SV wave, and their potential functions can be expressed, 
respectively, as (Lin et al., 2005) 
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half-space, respectively, and , 2a  and b  are the reflection coefficients. 
 The incident SV wave (Equation (18)) and the reflected SV wave (Equation (21)) are combined and 
expanded into a Fourier-Bessel series as follows (Pao and Mow, 1973): 
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with 1=nε  and 2=nε  when 1.n ≥  
 There are two possible critical angles for the reflected PI and PII

1
cr1 1sin ( / )c cβ αθ −=

 waves, respectively, in a poroelastic 
half-space (Lin et al., 2005): 
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Case I: The incident angle is less than the first critical angle—i.e., cr1.βθ θ<  Equation (19) can be 
expanded into a Fourier-Bessel series as follows: 

 ( ) ( )( )( )
1 1 1 1 1 01, 1 01, 1

0
, cos sinr

n n n
n

r J k r A n B nαφ θ θ θ
∞

=

= +∑  (26) 

where 

 ( )01, 1
1 1 1

01, 1

cos
i exp i cos

sin
n n

n
n

A n
a k h

B n
α

α α
α

θ
ε θ

θ
   

=   
  

 (27) 



ISET Journal of Earthquake Technology, June 2007 345 
 

 

Case II: The incident angle is greater than or equal to the first critical angle—i.e., cr1.βθ θ≥  When the 

incident angle reaches the first critical angle cr1θ , the reflected PI

( )1 1 1 cr1sin / sin ( / )sin 1c c c cα α β α βθ β θ= > =

 wave becomes a surface wave and 
propagates along the horizontal surface with its displacement amplitudes decreasing exponentially with 
depth (Lin et al., 2005). In this case, 

  (28) 

and there is no real-valued solution for 1αθ . There exists a real-valued quantity 1αΦ  such that 
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They can again be expanded into a Fourier-Bessel series based on Lee and Cao (1989) and Todorovska 
and Lee (1991) if, taking Equation (33) for example, 
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Case III and Case IV: These cases are for the incident angle less than the second critical angle 
( cr2βθ θ< ) and greater than or equal to the second critical angle ( cr2βθ θ≥ ), and are similar to Case I and 
Case II, respectively. The details can be seen in Liang et al. (2006a) and will not be discussed here for the 
sake of brevity. 
 For convenience and simplicity, the large circular surface used in Lee and Cao (1989) and Lee and 
Karl (1992, 1993) is used here to simulate the surface of the half-space (see Figure 1). It can be shown 
that when the radius of the large circular surface R is large enough, the error due to the approximation is 
small and can be neglected. Here, the curved surface of the approximated half-space is concave 
downward, with the center of the large radius far below the canyon center. Alternately, the curved surface 
of the approximated half-space can also be concave upward, with the center of the large radius then being 
far above the canyon center. Davis et al. (2001) have successfully used this later model in their above-
mentioned paper. As stated in the paper, their results are consistent and in agreement with the earlier 
results of Lee and Karl (1992, 1993) which uses the present model to solve the same problem as Davis et 
al. (2001) on the “diffraction of SV waves by underground, circular cylindrical cavities”. Both models 
have also been used and analyzed in the present paper, and with a large enough radius both approaches 
give results that are consistent and in agreement with each other. 
 In the presence of the underground circular cavity, scattering waves are generated. In the half-space, 
there exist scattered PI ( )1111 ,θφ rwaves , PII ( )1112 ,θφ r waves , SV waves ( )111 ,θψ r  due to the cavity, 
and scattered PI ( )2221 ,θφ r waves , PII ( )2222 ,θφ r waves , and SV waves ( )222 ,θψ r  due to the half-
space surface (approximated here as an almost flat circular surface with a very large radius), and these 
waves are to be expressed as a Fourier-Bessel series with regard to their respective coordinate systems 
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where, (.)mJ  and (1) (.)nH  are the Bessel function of the first kind and the Hankel function, respectively; 
( )1111 ,θφ r , ( )1112 ,θφ r , and ( )111 ,θψ r  are outgoing waves scattering away from the center 1O  of the 

cavity; and ( )2221 ,θφ r , ( )2222 ,θφ r , and ( )222 ,θψ r  are standing waves resulting from the reflection of 
waves back and forth between the interface 1r a=  and the curved surface of the half-space Rr =2 . 

 Therefore, the total resultant wave-potential functions in the half-space can be written as 

 ( ) ( )
1 2 11 12 21 22

r rφ φ φ φ φ φ φ= + + + + +  (54) 
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1 2

i rψ ψ ψ ψ ψ= + + +  (55) 

3. Boundary Conditions and the Solution 

 The boundary conditions in our model for the drained case are 
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at the surface of the cavity 1( )r b= . The boundary conditions for the undrained case are 
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at the surface of the cavity 1( )r b= . 

 This plane-strain problem for the incident SV waves is very similar to that of the incident SV waves 
on a semi-circular canyon in a poroelastic half-space (Liang et al., 2006a, 2006b). Much of the formulae 
and derivations are identical and will not be repeated here. The displacements and stresses can thus be 
expressed as 
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By introducing the boundary conditions, all of the coefficients of Equations. (48)–(53) can be solved, and 
the solution can be used to calculate the surface displacement near the cavity through Equations (54), 
(55), (63), and (64).  

VERIFICATION OF ACCURACY OF THE SOLUTION 

 The accuracy of the solution depends upon the truncation of the infinite series and can be checked by 
the extent to which it satisfies the boundary conditions. A dimensionless frequency parameter is defined 
as  
 2 /a βη λ=  (67) 

where βλ  is the wavelength of the incident waves in the half-space. We further define the residuals as 

 *
0/rr rrτ τ σ=  (68) 

 *
0/r rθ θτ τ σ=  (69) 

 *
0/σ σ σ=  (70) 

for the case of the drained boundary condition, and the residuals 

 *
0( ) ( ) /rr rrτ σ τ σ σ+ = +  (71) 

 *
0/r rθ θτ τ σ=  (72) 

 *
0( ) ( ) /r r r ru U u U u− = −  (73) 

for the case of the undrained boundary condition, where 0σ  and 0u  are the stress intensity and 
displacement intensity, respectively, of the incident waves. 
 Figures 2(a) and 2(b) show the convergence of averaged residuals (over the range of θ1 = −180° to 
180° with the interval of 1°) at the boundary r1 = a with the truncation order N at θβ  

NUMERICAL RESULTS AND ANALYSIS 

= 30° for porosity n 
= 0.3; Poisson’s ratio ν = 0.25; dimensionless frequencies η = 1.0, 3.0, and 5.0; and the drained boundary 
and undrained boundary, respectively. Figures 3(a) and 3(b) illustrate the boundary residuals at truncation 
orders N = 25, 40, and 50 and dimensionless frequencies η = 1.0, 3.0, and 5.0, for the drained boundary 
and undrained boundary, respectively. It is shown that the averaged residuals decrease rapidly when the 
truncation order N increases; therefore, if the truncation order N is large enough, the boundary residuals 
can become small enough—i.e., the results would converge to the true solution. Further, as the incident 
frequency increases, large N is needed for a prescribed precision. 

 The material properties for the half-space were chosen for numerical examples with parameters, crn  = 
0.36, crK  = 200 MPa, gK  = 36000 MPa, fK  = 2000 MPa, gρ  = 2650 kg/m3

fρ, and  = 1000 kg/m3

dry( )K

 
(Lin et al., 2005). Four different porosities (n = 0.1, 0.3, 0.34, and 0.36), which correspond to the dry-
frame bulk moduli  of 26055, 6167, 2189, and 200 MPa, respectively, are used to evaluate the 
surface displacement amplitudes, and three different Poisson’s ratios (ν = 0.2, 0.3, and 0.4) are used for 



ISET Journal of Earthquake Technology, June 2007 349 
 

 

the comparison. Figure 4 illustrates the variations of velocities 1αc , 2αc , and βc , respectively, versus 
porosity and Poisson’s ratio. 

 
(a) 

 
(b) 

Fig. 2 Convergence of averaged residuals at the boundary r1 

 Figures 5–7 show the horizontal (X) and vertical (Y) surface displacement amplitudes near the cavity 
in a drained saturated poroelastic half-space, an undrained saturated poroelastic half-space, and a dry 
poroelastic half-space, respectively, with porosity n = 0.3, Poisson’s ratio ν = 0.25, and dimensionless 
frequencies η of 1.0, 3.0, and 5.0. The surface displacement amplitudes are normalized by the 
displacement intensity of the incident SV waves. It should be noted that all of the surface displacements 
refer to the half-space in this paper. The surface displacement amplitudes for the case of a dry poroelastic 
half-space for η = 1.0 (see Figure 5) are identical to those in Lee and Karl (1992). From these figures, it 
can be seen that the surface displacement amplitudes of the undrained saturated poroelastic medium are 
close to those of the drained saturated poroelastic medium; however, depending upon the incident angle, 
the surface displacement amplitudes of the dry poroelastic medium and of the saturated poroelastic media 

= a as the truncation order N 
increases: (a) Drained boundary; (b) Undrained boundary 
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(either drained or undrained) may be very different. For example, when the incident angle θβ in      
Figures 5–7 is 30°, a large amplitude difference and phase shift can be observed, as well as a slight 
increase in the resultant wavelengths for the saturated cases, which can be demonstrated further by the 
following example case. We also find that the difference between the surface displacement amplitudes of 
the drained and undrained saturated poroelastic media becomes larger as the incident frequency increases, 
which implies that drainage condition plays a more important role under the condition of higher 
frequencies. The wavelengths of the waves in the undrained saturated poroelastic medium are slightly 
longer than those of the drained saturated poroelastic medium. For nearly grazing incident waves, a 
standing wave pattern is observed for x/a < −1, which is similar to what happens near a canyon (Liang et 
al., 2006a, 2006b). 

 
(a) 

 
(b) 

Fig. 3 Boundary residuals for specified truncation order N: (a) Drained boundary;                  
(b) Undrained boundary 
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Fig. 4  Variation of velocities cα1, cα2 and cβ  versus porosity n and Poisson’s ratio ν 

 Figures 8 to 10 illustrate the surface displacement amplitudes at x/a = −1, 0, 1 versus incident angles 
for a drained saturated poroelastic half-space, an undrained saturated poroelastic half-space, and a dry 
poroelastic half-space, respectively, and for porosity n = 0.25, Poisson’s ratio ν = 0.25, and dimensionless 
frequencies η = 1.0, 3.0, and 5.0. The critical angles for the saturated poroelastic media and the dry 
poroelastic medium are 30.48° and 35.26°, respectively, which are both near the incident angle 30°. The 
two critical angles are not the same, and therefore, the surface displacement amplitudes for θβ = 30° are 
very different, with the horizontal surface displacement amplitudes of the saturated poroelastic media 
being larger than those of the dry poroelastic medium. In contrast, at other incident angles—e.g., θβ  = 0°, 
60°, and 85° in Figures 5 to 7—there is not much difference between the surface displacement amplitudes 
of the saturated poroelastic media (either drained or undrained) and the dry poroelastic medium. As the 
incident frequency increases, the difference between the surface displacement amplitudes of the drained 
and undrained media becomes larger. 
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Fig. 5 Comparison between dry poroelastic, drained saturated poroelastic, and undrained 

saturated poroelastic half-spaces (η = 1.0) 
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Fig. 6 Comparison between dry poroelastic, drained saturated poroelastic, and undrained 

saturated poroelastic half-spaces (η = 3.0) 
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Fig. 7 Comparison between dry poroelastic, drained saturated poroelastic, and undrained 

saturated poroelastic half-spaces (η = 5.0) 
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Fig. 8 Surface displacement at x/a = −1, 0, 1 versus incident angle for dry poroelastic, drained 

saturated poroelastic, and undrained saturated poroelastic half-spaces (η = 1.0) 

 Figures 11 to 14 illustrate the effects of porosity (n = 0.1, 0.3, 0.34, and 0.36) on the surface 
displacement amplitudes near the cavity in a saturated half-space for Poisson’s ratio ν = 0.25, incident 
angles θβ  = 30° and 60°, and dimensionless frequencies η = 1.0, 3.0, and 5.0. It can be seen that for small 
porosity (e.g., n = 0.1) the surface displacement amplitudes of the saturated poroelastic media (either 
drained or undrained) are almost identical to those of the dry poroelastic medium (see Figure 5 to 7), and 
drainage condition has little influence on the surface displacement amplitudes; while for large porosity 
(e.g., n = 0.3), the effect of drainage condition becomes significant. It can also be seen that, for the same 
porosity, the displacement amplitudes of the undrained saturated medium (see Figures 13 and 14) are 
larger than those in the drained saturated medium (see Figures 11 and 12). It should also be noted that the 
horizontal surface displacement amplitudes for porosity n = 0.3 and incident angle θβ  = 30° (see    
Figures 11 and 13) are larger than those for the other porosities, e.g., n = 0.1, 0.34 and 0.36, since the 
critical angle for the porosity n = 0.3 is nearest to the incident angle. 
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Fig. 9 Surface displacement at x/a = −1, 0, 1 versus incident angle for dry poroelastic, drained 

saturated poroelastic, and undrained saturated poroelastic half-spaces (η = 3.0) 

 Figures 15 to 18 illustrate the effects of Poisson’s ratio (ν = 0.2, 0.3 and 0.4) on the surface 
displacement amplitudes near the cavity in a saturated half-space for porosity n = 0.3, incident angles θβ  
= 30° and 60°, and dimensionless frequencies η = 1.0, 3.0 and 5.0, respectively. The critical angles of 
incidence for three Poisson’s ratios, ν = 0.2, 0.3 and 0.4, are 33°, 27.58° and 19.98°, respectively. It can 
be seen from these figures that the horizontal surface displacement amplitudes for different Poisson’s 
ratios are very different as, for example, for the incident angle θβ  = 30° large amplitude difference and 
phase shift are observed, and there is not much difference in the surface displacement amplitudes for the 
incident angle θβ  = 60°. This may be explained by noting that the incident angle θβ  = 30° is closer to the 
critical angle than θβ  = 60°. It can also be observed that Poisson’s ratio has greater effect on the surface 
displacement amplitudes for the undrained saturated medium than for the drained saturated medium. 
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Fig. 10 Surface displacement at x/a = −1, 0, 1 versus incident angle for dry poroelastic, drained 

saturated poroelastic, and undrained saturated poroelastic half-spaces (η = 5.0) 

 Figures 19–22 and 23–26, respectively, illustrate the pore pressures along the surfaces of the half-
space and the cavity, for porosities n = 0.1, 0.3, 0.34 and 0.36, with dimensionless frequencies η = 1.0, 
3.0 and 5.0. The pore pressures are normalized by the stress amplitudes of the incident SV waves. It is 
seen that large pore pressures occur near or around the cavity, and that the pore pressures depend strongly 
on the incident angles, which may be due to the wave interference between the surface of the half-space 
and the cavity. As the porosity increases, the pore pressures increase significantly but their oscillations 
become smoother, which implies that more energy is taken by the pore fluid and less by the softer dry 
frame. Saturated poroelastic medium with larger porosities and more pore fluid (for larger pore sizes) will 
lead to smoother variation of pore pressures. As the dimensionless frequency increases, the pore pressures 
become more complicated, which suggests that the higher frequency waves may more easily stimulate 
pore pressures of large amplitudes and rapid fluctuations. 
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Fig. 11  Surface displacement versus porosity for drained boundary (θβ  = 30°) 
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Fig. 12  Surface displacement versus porosity for drained boundary (θβ  = 60°) 
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Fig. 13  Surface displacement versus porosity for undrained boundary (θβ  = 30°) 
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Fig. 14  Surface displacement versus porosity for undrained boundary (θβ  = 60°) 
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Fig. 15  Surface displacement versus Poisson’s ratio for drained boundary (θβ  = 30°) 



ISET Journal of Earthquake Technology, June 2007 363 
 

 

 
Fig. 16  Surface displacement versus Poisson’s ratio for drained boundary (θβ  = 60°) 
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Fig. 17  Surface displacement versus Poisson’s ratio for undrained boundary (θβ  = 30°) 
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Fig. 18  Surface displacement versus Poisson’s ratio for undrained boundary (θβ  = 60°) 
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Fig. 19  Pore pressure along surface of half-space versus porosity (n = 0.1) 

 
Fig. 20  Pore pressure along surface of half-space versus porosity (n = 0.3) 
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Fig. 21  Pore pressure along surface of half-space versus porosity (n = 0.34) 

 
Fig. 22  Pore pressure along surface of half-space versus porosity (n = 0.36) 
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Fig. 23  Pore pressure along surface of cavity versus porosity (n = 0.1) 
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Fig. 24  Pore pressure along surface of cavity versus porosity (n = 0.3) 
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Fig. 25  Pore pressure along surface of cavity versus porosity (n = 0.34)  
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Fig. 26  Pore pressure along surface of cavity versus porosity (n = 0.36) 
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CONCLUSIONS 

 A wave-function series solution for the diffraction of incident plane SV waves by an underground 
circular cavity in a saturated poroelastic half-space was derived, and the effects of the incident 
frequencies, incident angles, boundary drainage, porosity, and Poisson’s ratio on the diffraction of 
incident plane SV waves were illustrated. 
 It has been shown here that 
• Depending on the incident angles, the surface displacement amplitudes near the cavity in a dry 

poroelastic half-space and in saturated poroelastic half-spaces can be very different and large phase 
shifts can be observed. The wavelengths of the waves in the undrained saturated poroelastic medium 
are slightly longer than those in the drained saturated poroelastic medium. 

• The surface displacement amplitudes of the undrained saturated poroelastic half-space are close to 
those of the drained saturated poroelastic half-space for low-frequency waves, but the difference 
becomes larger as the frequency of the incident waves increases. 

• For small porosity, the surface displacement amplitudes of the saturated poroelastic half-spaces are 
almost identical to those of the dry poroelastic half-space. 

• For small porosity, the drainage condition has little influence on the surface displacement amplitudes; 
but for large porosity, the effect of drainage condition becomes significant. 

• For the same porosity, the surface displacement amplitudes near the cavity in the undrained saturated 
half-space are larger than those in the drained saturated half-space. 

• Poisson’s ratio affects the surface displacement amplitudes near the cavity, both in drained and 
undrained conditions, and greater effects are observed for the undrained saturated half-space than for 
the drained saturated half-space. 

• Large pore pressures are observed near and around the cavity, and are influenced strongly by the 
incident angles. 

• As the porosity increases, the pore pressures increase significantly but their oscillations become 
smoother, and as the dimensionless frequency increases, the pore pressures become more 
complicated. 
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