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ABSTRACT 

 The dynamic response and wave propagation behavior resulting from anti-plane diffraction around an 
elastic wedge-shaped medium with an arbitrary-shaped cylindrical rigid foundation at its vertex has been 
studied. Numerical computation of the wave displacement field is carried out on and near the rigid 
foundation surfaces using the method of weighted-residuals, also known as the moment method. The 
wave displacement fields for the cases of elliptic, circular, rounded-rectangular and flat-elliptic rigid 
foundations are presented. As in previous works, the analysis demonstrates that the resulting surface 
displacement depends on many factors, including 1) the angle of the wedge-shaped half space, 2) the 
density (measure of rigidity) of the foundation, its geometry or shape at the vertex, 3) the frequencies of 
the incident waves, 4) the angle of incidence, and 5) the material properties of the media. The analysis 
provides results that help to explain geophysical observations regarding the amplification of seismic 
energy as a function of site conditions.  
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INTRODUCTION 

 The research presented in this paper involves the study of plane SH-waves propagating through a 
wedge-shaped media. In particular, the geometry of the media ranges from a flat elastic half-space (where 
the wedge angle is 180°) through the sloping wedge-shaped half space with wedge angles (νπ, ½ ≤ ν ≤ 1) 
ranging between 180° and 90° from a half space (ν = 1) to a quarter-space (ν = ½). Furthermore, an 
arbitrary-shaped and dynamically movable rigid foundation is present at the vertex of the wedge. Figure 1 
illustrates the geometry of a sloping wedge-shape half space for the case of incident plane SH-waves.  
 Even though the treatment of the problem is somewhat mathematical, it is believed that the 
consideration of such a problem has practical ramifications, as many houses and other structures have 
been built on ridges and cliffs overlooking valleys and the ocean. The topography of these ridges can be 
reasonably characterized in two-dimensions as a wedge-shaped half space. 
 The problem of the two-dimensional scattering and diffraction of plane elastic SH (shear horizontal, 
anti-plane) waves by a surface cylindrical canyon or rigid foundation in an elastic half-space has been 
studied by many researchers in earthquake engineering and strong-motion seismology. Trifunac (1973) 
first solved such two-dimensional SH scattering and diffraction of plane SH waves by a semi-circular 
canyon and later by rigid foundation in a flat elastic half space (Luco et al., 1975). Wong and Trifunac 
(1974a, 1974b) solved the same problem for semi-elliptical canyons, rigid foundations and alluvial 
valleys. Cao and Lee (1989, 1990), Lee and Cao (1989) extended Trifunac’s results (Trifunac, 1973) to 
cases involving shallow circular canyons, respectively, for incident SH, P and SV waves. Lee (1982, 
1984, 1988, 1990) further studied diffraction problems for hemispherical canyons, valleys and parabolic 
canyons. The common feature of the above papers is that all of the canyons are either circular, elliptic or 
parabolic in shape. In other words, they are all of regular shapes. This allows all of the above analyses to 
give closed-form analytic series as solutions to the problems. Good references for elastic wave 
propagation problems are found in texts by Mow and Pao (1971), Achenbach (1973), and Graff (1991). 
 For canyons, valleys or rigid foundations with irregular shapes, field computations will have to be 
carried out by numerical approximations (Wong et al., 1977; Sanchez-Sesma and Rosenbleuth, 1979). 
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Some popular methods in the analyses of wave diffractions are the finite difference method (FDM), the 
finite element method (FEM), and the boundary element method (BEM). 

Fig. 1  Arbitrary-shaped rigid foundation - The model 
 As pointed out in Lee and Wu (1994a, 1994b), with FDM or FEM, material inhomogeneity and 
irregular geometry can be modeled easily. But in dealing with semi-infinite or infinite domains, which are 
usually associated with the problem of wave scattering and diffraction, some approximations have to be 
introduced. The most general method is to simply truncate the infinite or semi-infinite domains into finite 
ones. In this way, artificial boundaries will have to be created and they will prevent the true propagation 
of the waves, thus introducing errors. Another difficulty is that FDM and FEM may be easily 
overwhelmed by the large physical dimensions or the fine details of the requirement, so for seismic wave 
analysis in a semi-infinite domain, they would numerically become a large-sized problem. The BEM, on 
the other hand, does not have these disadvantages; it only needs to perform integration along the 
boundaries and model the infinite domain very well. Theoretically, it is very suitable for the problems 
with infinite or semi-infinite geometries. It, however, encounters difficulty in dealing with the Green’s 
function singularities in the path of numerical integration. 
 With this difficulty in mind, Lee and Wu (1994a, 1994b) chose instead the so-called “weighted 
residual” or “moment” method to solve these diffraction problems involving arbitrary-shaped rigid 
foundations. This method is used abundantly both in the fields involving electromagnetic and acoustic 
waves. See Harrington (1967) for a full historical development and references of this method. 
 In the weighted residual method, used in this study, like the BEM, it only needs to be integrated along 
the original boundaries. Thus, the size of the equations is greatly reduced, when compared with that of the 
FDM and FEM, and it imposes no artificial boundaries at all. It also does not involve the Green’s 
function, thus avoiding the difficulty of singularities that the other methods encounter. Compared with the 
method of using the simple full space Green’s function (Chang, 1990), the results of the weighted residual 
method are much better for relatively deep rigid foundations. Besides all of these advantages, it is also 
simple to formulate. So the weighted residual, proposed here, is very suitable for wave scattering and 
diffraction problems. It is applied to arbitrary-shaped rigid foundations in this paper. 
 Lee and Sherif (1996) presented such a diffraction problem involving a circular canyon at the vertex 
of the wedge space. The solution is expressible in simple analytic closed form involving Hankel functions 
with the corresponding cosine terms. The analysis indicates that SH-waves travelling through a particular 
wedge geometry result in displacement fields that depend on the angle of incidence, the frequency of the 
incident wave, the geometry of the vertex and the material properties of the media. 
 General research in diffraction problems involving elastic wedge-shaped half spaces are very 
mathematical and is ongoing. A general literature survey of the current status of such research can be 
found in the lecture notes by Croisille and Lebeau (1999). Examples of more recent publications of elastic 
wedge problems are Pozharski (2000), and Marzeda et al. (2003). 
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SH WAVE PROPAGATION IN AN ELASTIC WEDGE 

 The two-dimensional model of the problem is shown in Figure 1. It represents the wedge-shaped 
space with angle νπ, where 1/2 < ν < 1. An arbitrary-shaped rigid foundation is situated on the vertex of 
the wedge space. Both the rectangular (x,y) and cylindrical (r,θ) coordinate systems are defined on the 
model. The wedge-shaped space is assumed to be elastic, isotropic and homogeneous, with the material 
properties given by Lame constants λ and µ and by the mass density ρ, from which the shear wave speed, 
Cβ  = (µ/ρ)1/2, is derived. 
 For incident plane SH waves with incident angle γ with respect to the horizontal, the free-field 
equation is (Sanchez-Sesma, 1985; Lee and Sherif, 1996) 
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where 0ε  = 1, and nε = 2 for n > 0. The presence of the arbitrary-shaped rigid foundation will result in 
the scattered waves which are given by the equation (Lee and Sherif, 1996): 
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Both the free-field ffW  and scattered waves sW  satisfy the free-field boundary condition: 
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 At r > a(θ), and θ = 0 and θ = νπ, the free-field stress boundary conditions are satisfied by ffW  and 
sW . Let the displacement of rigid foundation be denoted by ∆. At C, the surface of the rigid foundation, 

the displacement continuity boundary condition for r = a(θ), 0 ≤ θ ≤ νπ, is 
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THE WEIGHTED RESIDUAL (MOMENT) METHOD 

The weighted residual method, also known as the moment method, is used as a numerical method for 
the evaluation of the displacement field (Lee and Wu, 1994a, 1994b; Lee and Manoogian, 1995). Weight 
functions are selected along the surface of the rigid foundation C, such that wm = wm(θ) for  
m = 0,1,2,3,… and along C. 
 Using a weight function of wm(θ) = cos(mθ/ν), the above equation can be represented by 

 ( )
( )

0

cos 0ff s

r a

mW W d
νπ

θ

θ θ
ν=

 + − ∆ = 
 ∫   (5) 

The unknown coefficients are in the series of sW , and thus Equation (5) may be rewritten as, for  
m = 0, 1, 2, … 
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For m = 0, Equation (6) reduces to 
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Equation (7) can be represented by 
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where the unknowns are An and ∆. The coefficients C0n  and  c0n are shown below. 
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Note that the term c0n is the real part of C0n, c0n = Re(C0n), for n = 0, 1, 2, …. 
 For m > 0, the respective equations become 
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from the fact that the ∆ term drops out, because for m > 0, 
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 Equation (10) can be represented by 
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with the coefficients An, n = 0, 1, 2,… The coefficients Cmn and cmn are shown below: 
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Again, cmn is the real part of Cmn, i.e. cmn = Re(Cmn). 

THE KINETIC EQUATION 

 Unlike the case of a semi-circular canyon in an elastic wedge-shaped half space (Dermendjian and 
Lee, 2001), the above equations were enough to solve for the unknown Ans, as there was no rigid 
displacement, ∆, term. Thus, the kinetic equation is utilized for the additional equation. The kinetic 
equation is   

 2s
z ff Mω= − ∆  (14) 

where Mf is the mass of the foundation, the shaded area of Figure 1, and fz
s is the force of the resultant 

waves W  = ffW + sW  acting onto the surface of the foundation per unit z length. Also note that ω  may 
be expressed in terms of the shear wave number k, the shear modulus µ, and the mass density ρ. The 
kinetic equation becomes 

 2 2 2 2k c k µω
ρ

= =  (15) 



ISET Journal of Earthquake Technology, June-December 2003 165 
 

 

 2 fs
zf k A

ρ
µ

ρ
= − ∆  (16) 

where Mf  is replaced by ρfA, A being the cross-section area of the foundation. 
The force per unit length in the z direction, acting on the rigid foundation, the shaded portion of 

Figure 1, is evaluated in terms of the stresses acting on the rigid foundation, i.e. 
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In Equation (17), α = α(θ) represents the angle between the radial and normal directions, and τnz is given 
by the equation below 
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where W  = ffW + sW  is the total displacement field,  nr = cos α and nθ = sin α. Substituting 
Equation (16) into Equation (15) and combining with Equation (14), the following relationships are 
developed: 
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with the unknowns of An and ∆. The coefficients Dn and dn are given below: 
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Again note that dn is the real part of Dn, dn = Re(Dn). Equations (8) and (19) yield the unknowns Ans and 
∆, and thus the displacement field is evaluated. 

THE CASE OF A SEMI-CIRCULAR RIGID FOUNDATION 

 The case of the semi-circular foundation in an elastic wedge-shaped half space has an exact closed 
form solution for an incident plane SH wave (Dermendjian and Lee, 2001). The solution of the weighted-
residual method can thus be compared with the exact solution. The free-field motion and the scattered 
waves are given earlier by Equations (1) and (3). The boundary condition, expressed earlier by Equation 
(4), is repeated here with the value of  r = a = constant, the radius of the rigid circular foundation. 
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Thus, the solution represented by Equations (7), (8) and (9) is repeated here with the change of r = a 
rather than r = a(θ). The equations represented in Equations (9) are rewritten as 
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since the Hankel function of the first kind and the Bessel functions are independent of θ and thus can be 
taken out of the integral sign. The integrals in Equations (22) will vanish for all n not equal to 0, and have 
a value of νπ at n = 0. The equation represented by Equation (8) reduces to  
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The other relationship relating A0 and ∆ is presented by utilizing Equations (14) through (18), and is 
given in its final form in Equation (19). The coefficients in Equation (20) are rewritten in the circular 
rigid foundation case as 
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 It should be noted that the second term in Equations (20) vanish as the angle α, the angle between the 
normal and radial directions, is zero. The integrals in Equation (20) will vanish for all n not equal to 0, 
and have a value of νπ at n = 0. The equation represented by Equation (19) reduces to  
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where the area of the semi-circular rigid foundation is given by νπa2/2, and a0 = 2/ν. By substituting     
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 (1)’(ka), and –k*J1(ka) for J0’(ka), the above equation is now written as 
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which is identical to the analytic solution (Dermendjian and Lee, 2001). 
 The solution, represented by Equations (10), (11), (12) and (13), may be repeated here with the 
change of r = a rather than r = a(θ). The equations represented in Equations (13) can thus be rewritten 
as for m > 0, 
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Utilizing the orthogonality of the cosine functions, i.e. for m = n, but not equal to zero, and zero for 
m not equal to n, the set of equations  
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represented by Equation (12) are now reduced to  
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which reduces to  
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which is again identical to the analytic solution (Dermendjian and Lee, 2001). 
 The matrix presented in Equation (12) is thus diagonal except for the 2×2 upper left portion which is 
coupled, representing the relationships between A0 and ∆. This solution thus mirrors that of the analytical 
solution presented in the above reference. 
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 In other words, the appropriate choice of the weight functions results in the exact closed form solution 
for the case of the semi-circular rigid foundation. 

 
Fig. 2  Anti-plane surface displacement amplitudes: Elliptic rigid foundation  

THE DISPLACEMENT AMPLITUDES 

 The above analyses for arbitrary-shaped rigid foundations are applied for the following cases of rigid 
foundations, where, in each case, the ratio of foundation density to soil density of ρf/ρ  = 4 is used. 

1.  The Elliptic Rigid Foundation 

 The displacement amplitudes for elliptic rigid foundations are evaluated for the shape defined by  
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for ratios of b/a of 0.75 to 1.25. When the b/a ratio is 1, the shape is circular and is compared with the 
solution of Lee and Sherif (1996). The results of the circular rigid foundation on half space, where the 
wedge angle νπ  = 180°, are compared with the existing analytic solutions presented by Trifunac (1973). 
The results of the elliptical rigid foundation on half space, where the wedge angle νπ = 180°, are 
compared with the existing analytic solutions presented by Dermendjian and Lee (2001).  

 
Fig. 3  Anti-plane surface displacement amplitudes: Flat circular rigid foundation 

 The wedge angles studied range from 90° to 180°, the cases of a quarter space to that of a flat half-
space. Figure 2 is a representative graph representing the displacement amplitudes for elliptic rigid 
foundations with wedge angle of νπ = 90° and varying angles of incidence. The graphs are three-
dimensional plots representing the displacement amplitudes for incident plane unit amplitude SH waves. 
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 For all graphs, the displacement amplitudes are plotted versus the dimensionless distance x/a labeled 
to range between values of –5 and 5, and the frequency (wave number) ka, ranging between values of 0 
and 10. Note that these distances are not the coordinates on the axis used, but are shown just for visual 
convenience. The labels x/a < –1 thus correspond to points on the horizontal surface of the wedge-shaped 
half space to the left of the rigid foundation. Distances –1 < x/a < b/a (the shaded part in the figure) 
correspond to points on the surface of the rigid foundation, and distances x/a > b/a correspond to points 
on the inclined surface of the wedge-shaped half space to the right of the rigid foundation. The origin is 
taken as shown in Figure 1, at the point of intersection of the horizontal and the inclined surfaces of the 
wedge with the positive x-axis to the left of the origin and the positive y-axis vertically downward. 

 
Fig. 4  Anti-plane surface displacement amplitudes: “Rounded” rectangular rigid foundation 

 In addition, for all graphs, the stress-free boundary condition on the horizontal and the inclined 
surfaces of the wedge-shaped half space, i.e. where x/a < –1 and x/a > b/a, are automatically satisfied 
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and thus no integration is carried out at those surfaces. Integration is carried out on the points that are on 
the surface of the rigid foundation by using the (moment) method of weighted-residuals. 
 In the absence of the rigid foundation, the maximum free-field displacement amplitude in a quarter 
space is 4. In the presence of the rigid foundation, the maximum displacement amplitudes higher than 6 is 
observed, corresponding to an amplification of over 1.5.  

2.  The Elliptic-Flat beyond 90° Rigid Foundation 

 The displacement amplitudes of elliptic rigid foundations with flat surface beyond 90° are evaluated 
for the shape defined by Equation (9) earlier for the elliptic part of the rigid foundation and by a flat 
surface for the surface beyond 90°. The analyses can again be performed for various b/a ratios of 0.75 to 
1.25. The wedge angles of interest are again from 90° to 180°. Figure 3 is a representative graph 
representing the displacement amplitudes for elliptic rigid foundations with flat surface beyond 90° with 
wedge angle of 120° and four angles of incidence. 
 In the absence of the rigid foundation, the maximum free-field displacement amplitude in a 120°  
(νπ = 2π/3) wedge space is 2/ν = 3. In the presence of the rigid foundation, the maximum displacement 
amplitudes close to 6 (the case of horizontal incidence) are again observed, corresponding to an 
amplification close to 2.  

3.  The Rounded-Rectangular Rigid Foundation 

 The displacement amplitudes for rounded-rectangular rigid foundations are evaluated for the shape 
defined by 
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where α > 0 is a positive integer large enough so that the graph of the function resembles a rectangular 
shape with “rounded” corner. In this analysis, a value of α = 8 is used. Again, the analyses and 
calculations can range for b/a ratios of 0.75 to 1.25, and for wedge angles from 90° to 180°. Figure 4 is a 
representative graph representing the displacement amplitudes for rounded-rectangular rigid foundations 
with wedge angle of νπ = 150° and four angles of incidence. 
 In the absence of the rigid foundation, the maximum free-field displacement amplitude in a 150°  
(νπ = 5π/6) wedge space is 2/ν = 2.4. In the presence of the rigid foundation, the maximum 
displacement amplitudes close to 5 (the case of horizontal incidence) are again observed, corresponding 
to an amplification of over 2.  
 For the weighted-residual method, as many as N = 20 terms are used to achieve convergence at high 
frequencies. The agreement of the results with the existing analytic solutions is good. 

CONCLUSIONS 

 The displacement amplitudes calculated on or near arbitrary-shaped wedge-shaped rigid foundations 
show that the response is dependent on all the parameters used in the analysis, including but not limited to 
the angle of incidence, frequency of the incoming train of the SH waves, the geometry of the rigid 
foundation and the material properties of the media.  The reader is referred to Dermendjian (2002), and 
Dermendjian and Lee (2003) for a more complete set of case-studies. 
 In the absence of the rigid foundation, the maximum free-field displacement amplitude in a wedge-
shaped half-space with wedge angle νπ  is 2/ν.  The wedge spaces studied in this paper range from the 
case of a quarter space to a flat half-space (1/2 ≤ ν  ≤ 1). In the presence of the rigid foundation, the 
maximum displacement amplitudes higher than 6 (the case of horizontal incidence) are observed, and 
they correspond to an amplification of over 2.  
 The present case of an arbitrary-shaped cylindrical rigid foundation on the vertex of a wedge space is 
an extension of the same problem in a flat half space, and the case of an arbitrary-shaped cylindrical 
canyon in a wedge space. While there are not much practical rigid foundation topographies that will fit 
the geometry of the rigid foundations studied here, the present paper presents the methodology from 
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which it may be possible that more complicated problems are built on and solved. For example, the same 
weighted-residual moment method may next be applied to arbitrary-shaped foundations in Soil-Structure-
Interaction (SSI) studies on wedge-shaped half-space.   
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