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ABSTRACT 

 Response Spectrum Analysis (RSA) procedure has become a standard analysis tool in traditional 
strength-based design of buildings and bridges under reduced seismic loads. RSA has been recently 
extended to estimate nonlinear seismic demands. The Incremental Response Spectrum Analysis (IRSA) 
procedure is based on a straightforward implementation of RSA at each piecewise linear incremental step 
in between the formation of consecutive plastic hinges. The practical version of IRSA works directly with 
smoothed elastic response spectrum and makes use of the well-known “equal displacement rule” to scale 
modal displacement increments at each piecewise linear step. IRSA can be characterized as an adaptive 
multi-mode pushover procedure, in which modal pushover analyses are simultaneously performed for 
each mode at each incremental step under appropriately scaled modal displacements followed by an 
application of a modal combination rule. Examples are given to demonstrate the practical implementation 
of IRSA. 
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 The “Response Spectrum Analysis” (RSA) procedure has become a standard design tool in analysis 
of buildings and bridges under reduced seismic loads. In spite of the approximate nature of modal 
combination rules involved, multi-mode RSA has proven to be a powerful and easy-to-use method with a 
rational representation of modal dynamic properties as well as the direct definition of the seismic input 
through design response spectrum. Today RSA has been incorporated in a standard fashion in almost all 
modern seismic design codes as part of the “strength-based seismic design” process and it provides a 
reasonably accurate estimation of the peak seismic demand quantities in the linear range. 
 On the other hand, during the course of progress of earthquake engineering in the last few decades 
researchers and engineers have become well aware that structural behavior and eventual damageability of 
structures during strong earthquakes were essentially controlled by the inelastic deformation capacities of 
the ductile structural elements. Accordingly, it has been concluded that the seismic evaluation and design 
of structures should be based on nonlinear deformation demands, not on linear stresses induced by 
reduced seismic forces that crudely correlated with an “assumed” overall ductility capacity of a given 
type of a structure. Consequently, the last decade has witnessed the advent of the “performance-based 
design” concept, in which significant progress has been achieved with the development of “practice-
oriented nonlinear analysis procedures” based on the so-called “pushover analysis”. 
 All pushover analysis procedures can be considered as approximate extensions of the response 
spectrum method to the nonlinear response analysis with varying degrees of sophistication. For example, 
“Nonlinear Static Procedure—NSP” (ATC, 1996; FEMA, 2000) may be looked upon as a “single-mode 
inelastic response spectrum analysis” procedure where the peak response is obtained through a nonlinear 
analysis of a modal single-degree-of-freedom (SDOF) system. In practical applications, modal peak 
response can be appropriately estimated through “inelastic displacement spectrum” (FEMA, 2000; CEN, 
2003). 



170 A Response Spectrum-Based Nonlinear Assessment Tool for Practice: Incremental Response 
Spectrum Analysis (IRSA) 

 

 

 Note that single-mode pushover analysis can be reliably applied to only two-dimensional response of 
low-rise building structures regular in plan or simple regular bridges, where the seismic response is 
essentially governed by the fundamental mode. There is no doubt that application of single-mode 
pushover to high-rise buildings or any building irregular in plan as well as to irregular bridges involving 
three-dimensional response would lead to incorrect, unreliable results. Therefore, a number of improved 
pushover analysis procedures have been offered in recent years in an attempt to take higher mode effects 
into account (Gupta and Kunnath, 2000; Elnashai, 2002; Antoniou et al., 2002; Chopra and Goel, 2002; 
Kalkan and Kunnath, 2004; Antoniou and Pinho, 2004a, 2004b). In this context, “Incremental Response 
Spectrum Analysis (IRSA)” procedure has been introduced as a direct extension of the traditional RSA 
procedure (Aydınoğlu, 2003, 2004). 
 Despite the fact that pushover analysis has become extremely popular in recent years, there is still a 
lack of agreement on a universally accepted definition of the procedure. From a historical perspective, 
pushover analysis has always been understood as a nonlinear “capacity estimation tool” and generally 
called as “capacity analysis”. The nonlinear structure is monotonically pushed by a set of forces with an 
invariant distribution until a predefined displacement limit at a given location (say, lateral displacement 
limit at the roof level of a building) is attained. Such predefined displacement limit is generally termed 
“target displacement”. The structure may be further pushed up to the collapse condition in order to 
estimate its “ultimate” deformation and load carrying capacities. It is for this reason that pushover 
analysis has been also called as “collapse analysis”. 
 However, in view of performance-based seismic assessment and design requirements, the above 
definition is not sufficient. According to the new concept introduced by Freeman et al. (1975) and Fajfar 
and Fischinger (1988), which was subsequently adopted in ATC 40 (ATC, 1996) and FEMA 273 (BSSC, 
1997; FEMA, 2000), pushover analysis with its above-given historical definition represents only the first 
stage of a two-stage nonlinear static procedure, where it simply provides the nonlinear capacity curve of 
an equivalent single-degree-of-freedom (SDOF) system. The peak response, i.e., seismic demand, is then 
estimated through nonlinear analysis of this equivalent SDOF system under a given earthquake or through 
an inelastic displacement spectrum. In this sense the term “pushover analysis” now includes as well the 
estimation of the so-called “target displacement”. Eventually, controlling seismic demand parameters, 
such as plastic hinge rotations, are obtained and compared with the specified limits (acceptance criteria) 
to verify the performance of the structure according to a given performance objective under a given 
earthquake. Thus according to this broader definition, pushover analysis is not only a capacity estimation 
tool, but at the same time it is a “demand estimation tool”. 
 It is rather surprising that among the various multi-mode methods that appeared in the literature 
during the last decade, only two procedures, i.e., “Modal Pushover Analysis (MPA)” introduced by 
Chopra and Goel (2002) and “Incremental Response Spectrum Analysis (IRSA)” developed by 
Aydınoğlu (2003, 2004) conform to the above-given contemporary definition (for refined versions of 
MPA, see Hernandez-Montes et al. (2004), and Kalkan and Kunnath (2006)). Others have actually dealt 
with “structural capacity estimation” only, although this important limitation has been generally 
overlooked. It means that none of them aimed at estimating the nonlinear deformation demands (such as 
plastic hinge rotations or story drifts) under a given earthquake. Although elastic response spectrum of a 
specified earthquake was utilized, it was not for demand estimation, but only for scaling the relative 
contributions of vibration modes to obtain seismic load vectors (Antoniou et al., 2002; Elnashai, 2002; 
Gupta and Kunnath, 2000; Kalkan and Kunnath, 2004; Antoniou and Pinho, 2004a) or to obtain 
displacement vectors (Antoniou and Pinho, 2004b). Generally, building is pushed to a selected target 
displacement that is actually obtained from a nonlinear response history analysis (Gupta and Kunnath, 
2000; Kalkan and Kunnath, 2004). Alternatively a pushover analysis is performed for a target building 
drift and the earthquake ground motion is scaled to match that drift (Antoniou and Pinho, 2004a, 2004b). 
Therefore the results are always presented in a relative manner, generally in the form of story 
displacement or story drift profiles where pushover and nonlinear response history analysis results are 
superimposed for a matching target displacement or building drift. Thus, such pushover procedures are 
able to estimate only the relative distribution of deformation demand quantities, not their magnitudes, and 
hence their role in a contemporary deformation-based seismic evaluation/design scheme is questionable. 
 In view of the above assessment, the main objective of this paper is to present the salient features of 
IRSA procedure (Aydınoğlu, 2003, 2004), which has been recently included in the Turkish Seismic Code 
(Ministry of Public Works and Settlement, 2006; Aydınoğlu, 2006) as a practical tool for performance-
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based seismic assessment of existing buildings. But in a broader framework, the paper aims as well to 
provide a clear insight to the theoretical and practical aspects of the pushover analysis methods, in 
general. Towards this end, it will start with exploring the theoretical roots of the pushover methods, and 
will continue with the basic development and implementation of adaptive and invariant single-mode and 
multi-mode pushover procedures, including IRSA. 

EXPLORING THE THEORETICAL ROOTS OF PUSHOVER ANALYSIS 

 As it is stated above, all pushover methods can be looked upon as nonlinear extensions of the 
Response Spectrum Analysis (RSA). In this direction, nonlinear response history analysis of a MDOF 
system will be treated in the following through a “piecewise linear process” where the nonlinear behavior 
is modeled by simple “plastic hinges”. 

1. Piecewise Linear Modeling of Nonlinear Response  

 Plastic hinges are zero-length elements through which the nonlinear behavior is assumed to be 
“concentrated” or “lumped” at predetermined sections. A typical plastic hinge is ideally located at the 
centre of a plastified zone called “plastic hinge length” to be defined at the each end of a clear length of a 
beam or column. A one-component plastic hinge model with or without strain hardening can be 
appropriately used to characterize a bi-linear moment-curvature relationship. The so-called “normality 
condition” can be used to account for the interaction between plastic axial and bending deformation 
components (McGuire et al., 2000). 
 Plastic hinge concept is ideally suited to the piecewise linear representation of concentrated nonlinear 
response. Linear behavior is assumed in between predetermined plastic hinge sections as well as 
temporally in between the formation of two consecutive plastic hinges. As part of a piecewise 
linearization process, yield surfaces of plastic hinge sections may be appropriately linearized, i.e., they 
may be represented by finite number of lines or planes in two- and three-dimensional response models, 
respectively. As an example, two-dimensional yield surfaces (lines) of reinforced concrete and wide 
flanged steel sections are shown in Figure 1. Note that number of linear segments may be increased in 
reinforced concrete section for an enhanced accuracy. 

 

Fig. 1 Piecewise linearised yield surfaces (lines) of typical (a) reinforced concrete section,     
(b) wide flanged steel section 

2. Piecewise Linear Equations of Motion of Nonlinear System 

 In a plastic hinge model with multi-linear hysteretic behavior, the dynamic response would be 
essentially linear during an incremental step (i) between a time t and a previous time station ti–1 at which 
the response is already determined. Thus, “piecewise linear” incremental equations of motion of a 
nonlinear multi-degree-of-freedom (MDOF) structure subjected to a uni-directional ground motion can be 
written for t > ti–1 as 
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where ( )u t  represents the relative displacement vector and ( )g
xu t  refers to the ground acceleration of a 

given earthquake in x-direction. g
xI  is a kinematic vector representing the pseudo-static transmission of 

the ground acceleration to the structure, whose components associated with the degrees of freedom in x 
earthquake direction are unity and others are zero. In Equation (1), M denotes the mass matrix, i( )K  
represents the instantaneous (tangent) stiffness matrix in incremental step (i) and i

G
( )K  refers to geometric 

stiffness matrix accounting for second-order (P-delta) effects. The instantaneous damping matrix i( )C  is 
assumed to be Rayleigh type, i.e., it is formed as a linear combination of mass and stiffness matrices. 

3. Piecewise Linear Mode-Superposition 

 The instantaneous displacement response during a piecewise linear incremental step (i) can be 
expanded to the modal coordinates as 
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in which Nm nd t( ) refers to the number of modes to be considered in the modal expansion,  is the modal 

displacement, and   
i

n
( )Φ  is the instantaneous nth mode shape vector to be obtained from a free-vibration 

analysis: 
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where i
nω
( )  represents the instantaneous natural frequency. i

xnΓ( )  in Equation (2) denotes the instantaneous 
participation factor for an earthquake in x-direction, which is defined as 
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 Substituting Equation (2) and time derivatives into Equation (1) and pre-multiplying with   
i

n
( )Φ  

followed by applying modal orthogonality conditions and considering Equation (4) result in an uncoupled 
instantaneous modal equation of motion in the nth mode: 
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Here, i
nξ
( )  represents modal damping ratio, and 1n id t −

*( )  is expressed as 
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where i
xnL( )  is as defined in Equation (4). Equations (5) and (6) reveal that each modal equation is 

dependent upon the past response history of the MDOF structural system in terms of displacement vector 
and its time derivatives developed at the previous time instant. Applying modal expansion to u(ti–1

1n id t −
*( )

) as in 
Equation (2),  given in Equation (6) can be expressed as 
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from which it can be observed that if 1
  
i

n
−( )Φ  were close enough to   

i
n
( )Φ , the above-mentioned coupling 

would cease to exist. Indeed, if it is assumed that 1i i
n n

−≅( ) ( )Φ Φ  for all modes, which is expected to hold 
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in relatively “redundant” systems, then modal orthogonality conditions would result in the following 
simplification: 

 1 1n i n id t d t− −≅*( ) ( )  (8) 

 For the sake of simplicity, the following modified notation is used in all expressions to follow: 

 1
1            i i

n i n n i nd t d d t d −
−→ →( ) ( )( ) ; ( )  (9) 

Thus from Equations (5), (8) and (9), typical nth modal equation can be expressed approximately in an 
incremental form as 

 22i i i i i i g i
n n n n n n xd d d u∆ + ξ ω ∆ + ω ∆ = −∆( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 
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where 1g i g i g i
x x xu u u −= −( ) ( ) ( )
  ∆  is the ground acceleration increment and i

nd∆ ( )  represents the modal 
displacement increment, the latter of which can be expressed as 

 1i i i
n n nd d d−= + ∆( ) ( ) ( )  (11) 

Note that the third term at the left-hand side of Equation (10) is called “modal pseudo-acceleration 
increment”, which is defined as 

 2i i i
n n na d∆ = ω ∆( ) ( ) ( )( )  (12) 

where its cumulative value at the (i)th step can be written as similar to the cumulative modal displacement 
given in Equation (11): 

 1i i i
n n na a a−= + ∆( ) ( ) ( )  (13) 

Thus Equation (10) can be rewritten as 

 2i i i i i g i
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 
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 With respect to the exact incremental equations of motion given in Equation (1), approximate modal 
incremental equations given in Equation (10) or (14) are expected to provide better results in relatively 
“redundant systems” due to the assumptions indicated in Equation (8). Such systems have the potential of 
developing large number of plastic hinges and therefore the formation of a new hinge would only 
marginally (or even negligibly) modify the mode shapes of the structural system. On the contrary, in 
structural systems where only a small number of hinges can potentially develop, such as bridges with few 
isolated single-column piers, the use of incremental equations of motion (see Equation (10) or (14)) could 
lead to erroneous results, because significant changes could occur in mode shapes in successive 
incremental steps. Note that these observations apply as well to those systems whose response is 
practically governed by a single mode only. 

4. Modal Hysteresis Loops and Modal Capacity Diagrams 

 It is shown above that incremental solution of Equation (1) can be approximately reduced to the 
incremental solution of Equation (10) or (14), through which “modal displacement versus modal pseudo-
acceleration diagrams” can be constructed. Those hypothetical diagrams represent the “modal hysteresis 
loops”, which are schematically depicted in Figure 2(a). The outer hysteresis loops should be the fattest in 
the first mode and get thinner and steeper as the mode number increases. According to Equation (12), the 
instantaneous slope of a given diagram is equal to the eigenvalue (natural frequency squared) of the 
corresponding mode at the piecewise linear increment concerned. The backbone curves of the 
hypothetical modal hysteresis loops in the first quadrant may be appropriately called the “modal capacity 
diagrams”, which are indicated by solid curves in Figure 2(a). In the special case where the first mode 
alone is assumed to represent the dynamic response, the modal capacity diagram is, by definition, 
identical to the so-called “capacity spectrum” defined in the Capacity Spectrum Method (ATC, 1996). 
The term “modal capacity diagram” is introduced by Aydınoğlu (2003) by adding the word “modal” to 
the terminology proposed by Chopra and Goel (1999). Note that in linearly elastic response, modal 
hysteresis curves and modal capacity diagrams degenerate into straight lines as shown in Figure 2(b). 
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Fig. 2 (a) Schematic representation of hypothetical modal hysteresis loops and their backbone 
curves (modal capacity diagrams—solid curves); (b) Corresponding curves and 
diagrams in linear response 

5. A Generic Definition of Pushover Analysis 

 Within the framework of the theoretical basis explained above, pushover analysis can be defined as a 
“monotonic nonlinear analysis” of progressively yielding MDOF system with a simultaneous 
“monotonic” construction of the modal capacity diagram(s) until the peak response is obtained for a given 
earthquake ground motion, so that the analysis procedure can be used as an essential tool in performance 
assessment process. Thus, according to the classification given in the introductory section of this paper, 
pushover analysis is ultimately defined as a “seismic demand estimation tool”. More specifically, the 
analysis should be able to produce ductile deformation demands, such as plastic hinge rotations or 
corresponding strains, as well as brittle force demands, e.g., shears in reinforced concrete elements. 
 With respect to the above presented analytical formulation, now the analysis process is changed from 
a “dynamic response history analysis” of MDOF system to a “monotonic pushover history analysis”, 
while the “incremental time step” (i) transforms to a monotonic “pushover step” (i), which is defined as 
the “analysis step in between the formation of two consecutive plastic hinges”. Since modal capacity 
diagrams are defined as the backbone curves of the modal hysteresis loops, their peak values, i.e., modal 
seismic demand, can be obtained from the nonlinear solution of Equation (10) under a given earthquake 
ground motion. Alternatively, “inelastic response spectrum” can be utilized for the same purpose, which 
is the preferred option for routine engineering applications. 
 The “pushover history analysis” can be performed either in the form of a static analysis under the 
specified equivalent seismic loads with adaptive or invariant distributions, or it may be formulated as a 
piecewise linear response spectrum analysis by considering the continuously changing properties of the 
structure. The latter may be interpreted as performing pushover analyses in various modes 
simultaneously. 
 As a general background to pushover history analyses, relationships between the coordinates of 
modal capacity diagrams, i.e., modal displacement and modal pseudo-acceleration of modal SDOF 
systems versus the corresponding response quantities of the MDOF system, can be expressed as in the 
following: 
(a) Piecewise linear relationship between the nth modal displacement increment and the corresponding 

displacement increment of MDOF system at the (i)th pushover step is 

   = i i i i
n n xn nd( ) ( ) ( ) ( )Δu Φ Γ ∆  (15) 

(b) Piecewise linear relationship between the nth modal pseudo-acceleration increment and the 
corresponding equivalent seismic load increment of MDOF system at the (i)th pushover step is 

d n 

a n 

n=1 

n=2 

n=3 

(a) (b) 
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Note that the above expression is adopted from the monotonic counterpart of the third term on the 
left-hand side of Equation (1), which can be expressed as 

 = ( )i i i i
n G n−( ) ( ) ( ) ( )Δf K K Δu  (17) 

 In fact, substituting Equation (15) into Equation (17) and utilizing Equations (3) and (12) results in 
Equation (16). 

SINGLE-MODE PUSHOVER ANALYSIS: PIECEWISE LINEAR IMPLEMENTATION WITH 
ADAPTIVE AND INVARIANT LOAD PATTERNS 

 Single-mode piecewise linear pushover procedure is applicable to low-to-medium rise regular 
buildings whose response is effectively controlled by the first (predominant) mode. Slight torsional 
irregularities may be allowed provided that a 3-D structural model is employed.  
 Regarding the adaptive pattern, the first-mode counterpart of equivalent seismic load increment given 
in Equation (16) can be written for the (i)th pushover step as  

 ( ) ( ) ( ) ( )
1 1 1 1 1 1 = ;           = i i i i i i

xa( ) ( )Δf m m M∆ Φ Γ  (18) 

where ( )
1
im  represents the vector of “participating modal masses” effective in the first mode. Superscript 

(i) on the participating modal mass and mode shape vectors as well as on the modal participation factor 
indicates that instantaneous first-mode shape corresponding to the current configuration of the structural 
system is considered following the formation of the last plastic hinge at the end of the previous pushover 
step. In adaptive case, a fully compatible modal expression can be written from Equation (15) for the 
increment of displacement vector as well:  

 ( )  ( )
1 1 1 1 1 1 = ;          = i i i i i i

xd( ) ( ) ( ) ( )Δu u u∆ Φ Γ  (19) 

 Since both ( )
1
iΔu  and ( )

1
iΔf  are based on the same instantaneous modal quantities, there is a one-to-

one correspondence between them. Thus, adaptive implementation of the single-mode pushover analysis 
can be based on either a monotonic increase of displacements or equivalent seismic loads. However, this 
is not the case when the load pattern is kept invariant during pushover history, i.e., a compatible modal 
displacement expression cannot be provided. In the following paragraph, pushover analysis will be treated 
on the basis of monotonic increase in the equivalent seismic loads where both adaptive and invariant 
patterns will be considered in a common framework. 
 In the case of invariant load pattern, Equation (18) is modified as 

 ( ) 1 (1) 1 1
1 1 1 1 1 1 = ;      = i i

xa( ) ( ) ( ) ( )Δf m m M∆ Φ Γ  (20) 

where the vector of first-mode participating modal masses, (1)
1m , is defined at the first pushover step (i = 

1) and retained “invariant” during the entire course of pushover history. Note that inverted triangular or 
even height-wise constant amplitude mode shapes are being used in practice (FEMA, 2000) in place of 

(1)
1Φ . 

1. Pushover History Analysis 

 In piecewise linear pushover history analysis equivalent seismic load vector of the MDOF system, 
which could have either adaptive or invariant pattern, is increased monotonically in the increments of 

( )
1

iΔf  where modal pseudo-acceleration increment, 1
ia∆ ( ) , is simultaneously calculated as the single 

unknown quantity at each (i)th pushover step leading to the formation of a new hinge. In this respect any 
response quantity of interest, such as the increment of an internal force, a displacement component, a 
story drift, or a plastic hinge rotation of a previously formed hinge, to be developed at the end of the (i)th 
pushover step may be written in a generic form as 

 1 1
1

i i i i i iq q q q q a− −= + ∆ = + ∆( ) ( ) ( ) ( ) ( ) ( )  (21) 
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Here, iq( )  and 1iq −( )  are the “generic response quantities” to develop at the end of current and previous 

pushover steps, iq∆ ( )  is the respective increment, and iq ( )  represents a generic response quantity to be 

obtained for 1 1ia∆ =( ) , i.e., from the application of 1
i( )m  or (1)

1m  as equivalent seismic loads, 
representing the adaptive or invariant pattern, respectively. Now, the above generic expression is 
specialized for the response quantities that define the coordinates of the “yield surfaces” of all potential 
plastic hinges, e.g., biaxial bending moments and axial forces in a general, three-dimensional response of 
a framed structure. In the first pushover step (i = 1), response quantities due to gravity loading are 
considered as (0)q  in Equation (21). As part of the piecewise linearization process of pushover analysis as 
well as to avoid iterative operations in the hinge identification process, yield surfaces are appropriately 
linearized in a piecewise fashion as mentioned above (Figure 1), i.e., they are represented by finite 
number of lines or planes in two- and three-dimensional response models, respectively. As an example, 
planar yield surfaces (lines) of a reinforced concrete or steel section (j) as shown in Figure 1 where a 
typical line (s) can be expressed as 
 1j s jp j s jpM Nα +β =, ,  (22) 

Here, jpM  and jpN  represent the yield bending moment and corresponding axial force, respectively, at 
the section j while j sα ,  and j sβ ,  refer to the coefficients defining the yield line (s). For the (i)th pushover 
step, Equation (21) is specialized for bending moment and axial force as 

 1 1
1 1 1 1 1 1 1 1        i i i i i i i i

j j j j j jM M M a N N N a− −= + = +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,;∆ ∆  (23) 

which are then substituted into Equation (22), and 1
ia∆ ( )  is extracted as 

 
1 1  

1 1
1

1 1

1  i i
j s j j s ji

j s i i
j s j j s j

M N
a

M N

− −−α −β
∆ =

α +β

( ) ( )
, , , ,( )

, ( ) ( )
, , , ,

( )  (24) 

 The yield line (s) at the section (j) that intersected with a minimum positive 1
i

j sa∆ ( )
,( )  among all 

yield lines of all potential plastic hinges identifies the new hinge formed at the end of the (i)th pushover 
step. Once 1

ia∆ ( )  is determined, any response quantity of interest developed at the end of that step can be 
obtained from the generic expression of Equation (21). 
 As the formation of the new hinge is identified, the current global stiffness matrix of the structure is 
locally modified such that only the element stiffness matrix affected by the new hinge is replaced with a 
new one for the next pushover step. Normality criterion is enforced in columns and walls for the coupling 
of internal forces as well as plastic deformation components of the newly formed plastic hinge. 
 Provided that the load pattern is adaptive and therefore resulting displacement increments are always 
compatible with the equivalent seismic load increments, modal displacement increment, 1

id∆ ( ) , is related 

through Equation (12) to the corresponding modal pseudo-acceleration increment, 1
ia∆ ( ) , obtained at each 

pushover step: 

 1
1 2

1

i
i

i
ad ∆

∆ =
ω

( )
( )

( )( )
 (25) 

Here, 1
iω( )  represents the instantaneous natural circular frequency calculated at the (i)th pushover step. In 

the case of an invariant pattern, however, since modal equivalent loads and resulting displacement 
increments are not compatible, two procedures can be suggested to estimate the modal displacement 
increments.  
(a) The first procedure involves the approximate calculation of the instantaneous eigenvalue, 2

1
iω( )( ) , as 

a Rayleigh quotient (Aydınoğlu, 2005): 
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in which 1
i

ku ( )
,  represents the displacement component at the kth DOF under the equivalent seismic 

loads 1
1km( )
,  with invariant pattern that are defined through Equation (20) for 1 1ia∆ =( ) . Thus, the 

modal displacement increment, ( )
1Δ id , is obtained by substituting Equation (26) into Equation (25). 

(b) The second procedure is the one already applied in practice (ATC, 1996; FEMA, 2000), where modal 
displacement increment is calculated through Equation (19), i.e., by specializing it for the roof 
displacement increment with the corresponding first-mode shape amplitude of the first pushover step: 

 1 
1 1 1

1 1

i
Ni

N x

u
d

∆
∆ =

Φ Γ

( )
,( )

( ) ( )
,

 (27) 

 It is worth noting that in the single-mode pushover procedure presented herein, there is no need to 
plot the conventional pushover curve, with vertical axis representing the sum of equivalent seismic loads, 
i.e., base shear. Accordingly, conversion of the base shear increments to pseudo-acceleration increments 
is not required, because those are obtained directly by Equation (24) at each pushover step. In fact, it can 
be shown that even if the conventional approach had been applied the same results would be obtained, 
i.e., the base shear in x earthquake direction is obtained by summing up the equivalent seismic loads given 
by Equation (20) in that direction: 

   1
1 1 1 1
i g T i g T i

x x xV a= =( ) ( ) ( ) ( )I f I m∆ ∆ ∆  (28) 

On the other hand, total participating modal mass of the MDOF system in the x-direction is obtained by 
summing up the elements of the vector of participating masses given in Equation (20), i.e., 

 
1  2

1  (1) 1
1 1 1

1

g T x
x x

LM
M

= =
( )

( )
( )I m  (29) 

Thus modal pseudo-acceleration increment at the (i)th pushover step is obtained from Equations (28) and 
(29) as 

 1
1 1

1 

i
i x

x

Va
M

=
( )

( )
( )

∆
∆  (30) 

which is nothing but the conversion relationship used in the traditional pushover procedure (ATC, 1996; 
FEMA, 2000). 

 With 1
id∆ ( )  and 1

ia∆ ( )  determined as above, adding to those obtained at the end of the previous 
pushover step, modal displacement and modal pseudo-acceleration are calculated from Equations (11) 
and (13) at the end of the (i)th step as 

 1 1
1 1 1 1 1 1       i i i i i id d d a a a− −= + ∆ = + ∆( ) ( ) ( ) ( ) ( ) ( );  (31) 

It is noted that essentially ( )
1Δ id  and ( )

1Δ ia  are the elements of an incremental modal equation of motion 
of the first-mode equivalent SDOF system: 

 1 1 1 1 12i i i i i g i
xd d a u∆ + ξ ω ∆ + ∆ = −∆( ) ( ) ( ) ( ) ( ) ( )

 

  (32) 

Thus modal capacity diagram of the fundamental mode is obtained directly as shown schematically in 
Figure 3, which is nothing but the so-called “capacity spectrum” (ATC, 1996) obtained from the 
traditional pushover curve through a modal coordinate transformation. According to Equation (25), 
instantaneous slope of the linear segment of the modal capacity diagram at the pushover step (i) in 
between the plastic hinge points (i–1) and (i) is equal to the fundamental “eigenvalue” of the structural 
system at that step as shown in Figure 3. 
 Note that instantaneous slope of the capacity diagram could turn out to be negative due to the P-delta 
effects, as indicated in Figure 3, when accumulated plastic deformations result in a negative-definite 
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second-order stiffness matrix. In the case of invariant load pattern, at such a critical pushover step, the 
monotonic load increase process is terminated. From such a step onwards, analysis is generally continued 
with a monotonic displacement increment process, while retaining a constant displacement pattern 
obtained at the critical step. The accuracy of this approach is doubtful. 

 

d1 

a1 (i) 2
1(ω )

 

i – 1 

i  

1  
(i)
1Δd

 

(i)
1Δa

 

 
Fig. 3  Modal capacity diagram of the fundamental mode 

 In the case of adaptive solution, the analysis process is not influenced by a negative instantaneous 
slope of the capacity diagram. A negative slope means a negative eigenvalue and thus an imaginary 
natural frequency, which leads to a modal response that resembles the non-vibratory response of an over-
damped system (Aydınoğlu and Fahjan, 2003). The corresponding mode shape has a remarkable physical 
significance, representing the post-buckling deformation state of the structure. Although structural 
engineers are not familiar with the negative (or zero) eigenvalues due to negative-definite (or singular) 
stiffness matrices, such eigenvalues and corresponding eigenvectors do exist, which can be routinely 
calculated by “matrix transformation methods” of eigenvalue analysis, such as the well-known “Jacobi 
Method” (Bathe, 1996). 

As mentioned above, a remarkable aspect of the above-presented adaptive procedure is that it does 
not necessitate the plotting of conventional pushover curve in terms of base shear versus roof 
displacement. Instead, modal capacity diagram, which itself is the essential tool for the estimation of 
modal displacement demand, is obtained directly on including direct consideration of the P-delta effects. 

2. Estimation of Modal Displacement Demand: Inelastic Spectral Displacement 

 The above-described process of pushover history analysis is continued until cumulative modal 
displacement calculated by Equation (31) exceeds the first-mode “inelastic spectral displacement”. It 
means that the last pushover step has been reached, and, therefore, the modal displacement to develop at 
the end of this step, 1

pd ( )  (superscript p stands for “peak”), is made equal to the inelastic spectral 
displacement, 1diS , : 

 1 1 p
did S=( )

,  (33) 

This is followed by the calculation of the modal displacement increment in the last step (p): 

 ( ) ( 1)
1 1 1Δ = p p

did S d −−,  (34) 

 The inelastic first-mode spectral displacement, 1diS , , can be calculated for a given ground motion 
record through nonlinear analysis of the modal SDOF system according to Equation (32) by considering 
hysteresis loops defined by the bi-linearized modal capacity diagram as the backbone curve (see Figure 
4(b)). However for practical purposes, inelastic first-mode spectral displacement, 1diS , , can be 
appropriately defined through a simple procedure based on the “equal displacement rule” (FEMA, 2000): 
 1 1 1di R deS C S=, , ,  (35) 

in which 1deS ,  represents the elastic spectral displacement of the corresponding linear SDOF system with 
the same period (stiffness) as the initial period of the bilinear inelastic system. Note that in practice 
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cracked section stiffnesses are used in reinforced concrete systems throughout the pushover analysis and 
therefore the fundamental period of the system calculated at the first “linear” pushover step (i = 1) is 
taken as the initial period of the bilinear inelastic system. This is contrary to the traditional approach 
where the fundamental period is further lengthened excessively due to the bi-linearization of modal 
capacity diagram. In Figure 4, modal capacity diagram and the elastic response spectrum are combined in 
a “displacement—pseudo-acceleration” format. In the case where 1

1 ST T>( )  (with ST  being the 
characteristic spectrum period at the intersection of constant velocity and constant acceleration regions), 
bi-linearization of the modal capacity diagram is even unnecessary as indicated in Figure 4(a), because 
“spectral displacement amplification factor” 1RC ,  is always equal to unity: 

 1
1 1 1            R SC T T= >( )
, ( )  (36) 

In the case where 1
1 ST T≤( ) , initial period is still defined as above; however, an iteration is necessary to 

calculate the spectral displacement amplification factor by using the following familiar relationship 
(FEMA, 2000; MPWS, 2006): 

 
1

1 1 1
1 1

1

1 1
1            y S

R S
y

R T T
C T T

R
+ −

= ≥ ≤
( )

, ( )
,

,

( ) /
( )  (37) 

in which 1yR ,  refers to the yield reduction factor (Figure 4(b)): 

 1
1

1

ae
y

y

S
R

a
= ,

,
,

 (38) 

 Note that alternative relationships are available for the displacement amplification factor that can be 
used in practical applications in lieu of those given by Equations (36) and (37). For those reference may 
be given to Aydınoğlu and Kaçmaz (2002), and to FEMA 440 (FEMA, 2005). 

 Once modal displacement increment in the last step, 1
pd∆ ( ) , is estimated, the corresponding 1

pa∆ ( )  is 
determined, and in turn, any response quantity of interest developed at the end of that step can be obtained 
from the generic expression of Equation (21). 
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Fig. 4  Estimating modal displacement demand 

MULTI-MODE ADAPTIVE PUSHOVER ANALYSIS: INCREMENTAL RESPONSE 
SPECTRUM ANALYSIS (IRSA) PROCEDURE 

 Multi-mode pushover procedure is intended for application on high-rise and/or irregular buildings and 
bridges where the seismic response cannot be effectively represented by the first mode only. These 
include torsionally sensitive buildings with 3-D response characteristics. 
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 In line with the theoretical background provided above, in the multi-mode case monotonic pushover 
history analyses have to be performed “simultaneously” in all the modes considered. As with the single-
mode pushover, in the adaptive case both MDOF system displacement increments and equivalent seismic 
load increments are based on the same instantaneous modal quantities. Thus the implementation of multi-
mode pushover analysis can be based on either a monotonic increase of displacements or equivalent 
seismic loads. These may be called “displacement-controlled” and “force-controlled” pushovers, 
respectively. To start with, using Equation (15), modal displacement increments of MDOF system can be 
expressed as   

  = ;         = i i i i i i
n n n n n xnd( ) ( ) ( ) ( ) ( ) ( )Δu u u∆ Φ Γ  (39) 

and corresponding expressions for the compatible seismic load increments can be written as multi-mode 
counterparts of those given in Equation (18) as 

 = ;        =i i i i i i
n n n n n xna( ) ( ) ( ) ( ) ( ) ( )Δf m m M∆ Φ Γ  (40) 

1. Modal Scaling 

 In order to define modal MDOF response, modal displacement increments  i
nd ( )∆  or modal pseudo-

acceleration increments  i
na( )∆  have to be determined in all modes at each pushover step, depending on 

whether displacement- or force-controlled pushover is applied. Since just a single plastic hinge forms and 
therefore only one yield condition is applicable at the end of each piecewise linear step, a reasonable 
assumption needs to be made for the relative values of modal displacement or modal pseudo-acceleration 
increments, so that the number of unknowns are reduced to one. This is called “modal scaling”, which is 
the most critical assumption to be made in all multi-mode pushover procedures, including IRSA. In this 
respect the only exception is the Modal Pushover Analysis—MPA (Chopra and Goel, 2002) where modal 
coupling is completely disregarded in the formation of plastic hinges and therefore modal scaling is 
omitted. 

1.1 Modal Scaling Based on Instantaneous Elastic Spectral Quantities 

 Modal scaling is probably the most critical and, at the same time, one of the most controversial issues 
of multi-mode pushover analysis. In a number of studies, such as Gupta and Kunnath (2000), Elnashai 
(2002), Antoniou et al. (2002), Antoniou and Pinho (2004a), force-controlled pushover is implemented 
where modal scaling is performed on “instantaneous” modal pseudo-accelerations. Using the terminology 
and notation of the present paper such a modal scaling can be expressed as  

 i i i
n aena F S=( ) ( ) ( )∆ ∆  (41) 

where i
aenS ( )  represents the instantaneous nth mode “elastic” spectral pseudo-acceleration at the (i)th 

pushover step, and iF ( )∆  refers to an incremental scale factor, which is independent of the mode number. 
Thus Equation (41) means that modal pseudo-acceleration increments are scaled in proportion to the 
respective elastic spectral accelerations. Note that the above-defined modal scaling is essentially identical 
to the scaling of modal displacement increments in proportion to respective elastic spectral displacements, 
which may be expressed as 

  i i i
n dend F S=( ) ( ) ( )∆ ∆  (42) 

where i
denS ( )  represents the instantaneous nth mode “elastic” spectral displacement corresponding to the 

above-given i
aenS ( ) , i.e., 2i i i

aen n denS S= ω( ) ( ) ( )( ) . Such a scaling has been used recently in a displacement-
controlled pushover procedure (Antoniou and Pinho, 2004b). 

 Naturally this type of modal scaling is exact for a single-step linear analysis with (1)Δ 1F = ; however 
it is doubtful whether it should be implemented in a nonlinear case. In fact, instantaneous elastic spectral 
parameters have no relation at all with the instantaneous nonlinear modal response increments. When the 
structure softens due to accumulated plastic deformations, the instantaneous “elastic” spectral 
displacement of the first mode increases disproportionately with respect to those of the higher modes, 
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leading to an exaggeration of the effect of the first mode in the hinge formation process prior to reaching 
the peak response. 

1.2 Modal Scaling Based on Instantaneous Inelastic Spectral Displacements 

 Displacement-controlled pushover is the preferred approach in the Incremental Response Spectrum 
Analysis—IRSA (Aydınoğlu, 2003, 2004), and modal pushovers are implemented simultaneously by 
imposing instantaneous displacement increments of the MDOF system at each pushover step according to 
Equation (39). In principle, modal displacements are scaled in IRSA with respect to the “inelastic spectral 
displacements”, i

dinS ( ) , associated with the “instantaneous” configuration of the structure (Aydınoğlu, 
2003). This is the main difference between IRSA and other studies referred to above where modal scaling 
is based on “instantaneous elastic” spectral pseudo-accelerations or displacements. IRSA’s adoption of 
“inelastic spectral displacements” for modal scaling may be considered as a “rational choice”, because 
those spectral displacements are nothing but the “peak” values of the modal displacements to be reached, 
as will be shown in the following. 
 In practice, modal scaling based on “inelastic spectral displacements” can be easily achieved by 
taking advantage of the “equal displacement rule”. Assuming that seismic input is defined via “smoothed 
elastic response spectrum”, according to this simple and well-known rule (which is already utilized above 
for the estimation of modal displacement demand in single-mode pushover), “peak displacement” of an 
inelastic SDOF system and that of the corresponding elastic system are assumed practically equal to each 
other, provided that the effective initial period is longer than the “characteristic period” of the elastic 
response spectrum. The characteristic period is approximately defined as the transition period from the 
constant acceleration segment to the constant velocity segment of the spectrum. For periods shorter than 
the characteristic period, elastic spectral displacement is amplified using a displacement modification 
factor, i.e., C1

1i i
n dend F S∆ = ∆( ) ( ) ( )



 coefficient given in FEMA 356 (FEMA, 2000). However, such a situation is seldom 
encountered in mid- to high-rise buildings and long bridges involving multi-mode response. In such 
structures, effective initial periods of the first few modes are likely to be longer than the characteristic 
period and therefore those modes automatically qualify for the equal displacement rule. On the other 
hand, effective post-yield slopes of the modal capacity diagrams get steeper and steeper in higher modes 
with gradually diminishing inelastic behavior (Figure 5). Thus, it can be comfortably assumed that 
inelastic spectral displacement response in higher modes would not be different from the corresponding 
spectral elastic response. Hence, smoothed elastic response spectrum may be used in its entirety for 
scaling modal displacements without any modification. As in the single-mode analysis, in reinforced 
concrete buildings elastic periods calculated at the first pushover step may be considered in lieu of the 
initial periods obtained from the bi-linearization of modal capacity diagrams (see Figure 4(b)). 
 In line with the “equal displacement rule”, scaling procedure applicable to the nth mode increment of 
modal displacement at the (i)th pushover step is simply expressed as 

  (43) 

where ( )Δ iF  is an “incremental scale factor”, which is applicable to all modes at the (i)th pushover step. 
1

denS ( )  represents the “initial elastic spectral displacement” defined at the first step (Figure 5), which is 
taken equal to the “inelastic spectral displacement” associated with the “instantaneous” configuration of 
the structure at any pushover step. Cumulative modal displacement at the end of the same pushover step 
can then be written as 

 1i i
n dend F S=( ) ( ) ( )

  (44) 

in which iF ( )
  represents the “cumulative scale factor” with a maximum value of unity: 

 1 1i i iF F F−= + ∆ ≤( ) ( ) ( )
    (45) 

 Note that the modal scaling expressions given above correspond to a monotonic increase of the elastic 
response spectrum progressively at each step with a cumulative scale factor increasing from zero until 
unity. Physically speaking, the structure is being pushed such that at every pushover step modal 
displacements of all modes are increased by increasing elastic spectral displacements, defined at the first 
step (i = 1) in the same proportion (according to the “equal displacement rule”), until they simultaneously 
reach the target “spectral displacements” on the response spectrum. Shown in Figure 5 are the scaled 
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spectra corresponding to the first yield, to an intermediate pushover step ( iF ( )
  < 1), and to the final step 

( iF ( )
  = 1), which are plotted in the ADRS (Acceleration-Displacement Response Spectrum) format and 

superimposed onto the modal capacity diagrams. 
 

 
Fig. 5  Scaling of modal displacements through monotonic scaling of response spectrum 

 It is worth warning that the equal displacement rule may not be valid at near-fault situations with 
forward directivity effect. 
 Again, it needs to be stressed that IRSA is a “displacement-controlled” procedure and, therefore, the 
above-mentioned monotonic spectrum scaling applies to spectral displacements only, not to the elastic 
spectral pseudo-accelerations. For the sake of completeness, however, a “compatible” modal pseudo-
acceleration increment, i

na∆ ( ) , corresponding to the increment of “scaled” modal displacement may be 
defined from Equations (12) and (43) as 

 
2

1
1 2         
i

i i i i n
n ain ain aen

n
a F S S Sω

∆ = ∆ =
ω

( )
( ) ( ) ( ) ( ) ( )

( )
( );
( )

  (46) 

where i
ainS ( )  represents “compatible inelastic spectral pseudo-acceleration”, and 1

aenS ( )  refers to “initial 

elastic spectral pseudo-acceleration” corresponding to the elastic spectral displacement, 1
denS ( ) , defined at 

the first pushover step. 

2. Multi-mode Pushover History Analysis: Simultaneous Pushovers in All Modes and Modal 
Combination 

 Substituting Equation (43) into Equation (15) leads to the following expression for the displacement 
vector increment in the nth mode at the (i)th pushover step: 

 ( ) 1;               i i i i i i
n n n n xn denF S= ∆ = Φ Γ( ) ( ) ( ) ( ) ( ) ( )Δu u u

   (47) 

Utilizing Equations (16) and (46), equivalent seismic load vector increment corresponding to the 
displacement vector increment given above in Equation (47) may be written for an alternative load-
controlled process: 

 ;       i i i i i i i
n n n n xn ainF S= =( ) ( ) ( ) ( ) ( ) ( ) ( )Δf f f M ∆ Φ Γ  (48) 

in which i
ainS ( )  is the compatible inelastic spectral pseudo-acceleration defined by Equation (46). 

 Now, piecewise linear multi-mode pushover history analysis can be performed at a given pushover 
step (i), by monotonically imposing displacement increments i

n
( )Δu  of the MDOF system, as defined in 

Equation (47), or alternatively, by applying equivalent seismic load increments i
n
( )Δf  given by    
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Equation (48) “simultaneously in all modes” considered. In this process, the increment of a “generic 
response quantity” of interest, such as the increment of an internal force, a displacement component, a 
story drift or the plastic rotation of a previously developed plastic hinge, may be calculated in each mode 
as 

 i i i
n nr r F∆ = ∆( ) ( ) ( )



  (49) 

where i
nr
( )
  represents the generic response quantity to be obtained in each mode for 1iF∆ =( )

 , i.e., by 

imposing the displacement vector i
n
( )u  given in Equation (47), or alternatively, by applying the load 

vector i
n
( )f given in Equation (48). Incremental scale factor iF∆ ( )

  is the single unknown at each pushover 
step leading to the formation of a new plastic hinge. 
 In the next stage, modal generic response quantity increments are combined by an appropriate modal 
combination rule, such as the Complete Quadratic Combination (CQC) rule as 

 
1 1

m mN N
i i i i

m mn n
m n

r r r
= =

= ρ∑ ∑( ) ( ) ( ) ( )( )    (50) 

where i
mnρ( )  is the cross-correlation coefficient of the CQC rule. Thus, generic response quantity at the end 

of the (i)th pushover step can be estimated as 

 1 1i i i i i ir r r r r F− −= + ∆ = + ∆( ) ( ) ( ) ( ) ( ) ( )


  (51) 

in which ir( )  and 1ir −( )  are the “generic response quantities” to develop at the end of current and previous 
pushover steps, respectively. In the first pushover step (i = 1), response quantities due to gravity loading 
are considered as (0)r . 
 The next stage of multi-mode pushover history analysis is similar to the single-mode analysis where 
the above-given generic expression is specialized for the response quantities that define the coordinates of 
the “yield surfaces” of all potential plastic hinges, e.g., biaxial bending moments and axial forces in a 
general, three-dimensional response of a framed structure. As part of the piecewise linearization process 
of pushover analysis as well as to avoid iterative operations in the hinge identification process, yield 
surfaces are appropriately linearized in a piecewise fashion as mentioned above (Figure 1), i.e., they are 
represented by finite number of lines or planes in two- and three-dimensional response models, 
respectively. As an example, planar yield surfaces (lines) of a reinforced concrete or steel section (j) are 
shown in Figure 1 where a typical line (s) can be expressed as 
 1j s jp j s jpM Nα +β =, ,  (52) 

in which jpM  and jpN  represent the yield bending moment and corresponding axial force, respectively, 
at section j while j sα ,  and j sβ ,  refer to the coefficients defining the yield line (s). For the (i)th pushover 
step, Equation (51) is specialized for bending moment and axial force as 

 1 1
1 1 1 1 1 1        i i i i i i i i

j j j j j jM M M F N N N F− −= + = +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,;   ∆ ∆  (53) 

which are then substituted into Equation (52) and iF∆ ( )
  is extracted as 

 
1 1  

1 1

1 1

1 i i
j s j j s ji

j s i i
j s j j s j

M N
F

M N

− −−α −β
∆ =

α +β

( ) ( )
, , , ,( )

, ( ) ( )
, , , ,

( )

 

 (54) 

The yield line (s) at section (j) that intersected with a minimum positive i
j sF∆ ( )
,( )  among all yield lines 

of all potential plastic hinges identifies the new hinge formed at the end of the (i)th pushover step. 

 Once iF∆ ( )
  is determined, any response quantity of interest developed at the end of that step can be 

obtained from the generic expression of Equation (51). Modal displacement increment i
nd∆ ( )  in any mode 

can be obtained from Equation (43), and in turn, modal pseudo-acceleration increment from Equation 
(12), leading to the simultaneous estimation of respective cumulative quantities, i.e., the new coordinates 
of all modes, which can be obtained through Equations (11) and (13). 
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 As mentioned in the case of single-mode pushover, when the formation of the new hinge is identified, 
the current global stiffness matrix of the structure is locally modified such that only the element stiffness 
matrix affected by the new hinge is replaced with a new one for the next pushover step. The normality 
criterion is enforced in columns and walls for the coupling of internal forces as well as plastic 
deformation components of the newly formed plastic hinge. 
 Thus it is seen that multi-mode pushover history analysis with IRSA is the extension of single-mode 
pushover history analysis described earlier. Indeed, instead of running a static analysis under equivalent 
seismic loads at each step, a response spectrum analysis is performed in IRSA at each step where seismic 
input data is specified either in the form of initial spectral displacement in each mode, 1

denS ( )  (which is 
calculated in the first pushover step and remains unchanged at all pushover steps), or seismic input is 
given in terms of “compatible inelastic spectral pseudo-acceleration” i

ainS ( )  defined by Equation (46). 

3. Estimation of Peak Quantities: Inelastic Seismic Demand 

 The above-described “pushover-history” process is repeated for all pushover steps until cumulative 
spectrum scale factor defined by Equation (45) exceeds unity at the end of a given pushover step. When 
such a step is detected, which is indicated by superscript (p), incremental scale factor corresponding to 
this final pushover step is re-calculated from Equation (45) as 

 11p pF F −∆ = −( ) ( )
   (55) 

In the last pushover step, modal displacement increment is redefined as  

 1p p
n Rn dend C S F∆ = ∆( ) ( ) ( )

  (56) 

where RnC  represents “spectral displacement amplification factor” in the nth mode. If 1RnC > , then 

seismic input for the nth mode is modified from 1
 denS ( )  to 1

Rn denC S ( ) , and the generic response quantity 
p

jr ( )
  is recalculated at the last step by repeating the elastic response spectrum analysis. Finally peak value 

of any response quantity of interest is obtained from the generic expression of Equation (51) for i = p: 

 1 1p p p p p pr r r r r F− −= + ∆ = + ∆( ) ( ) ( ) ( ) ( ) ( )


  (57) 
Spectral displacement amplification factor RnC  is calculated as shown below. 

 If 1
n BT T>( ) , i.e., 1 2 2

n Bω < ω( )( ) , then RnC  = 1. If 1
n BT T<( ) , i.e., 1 2 2

n Bω > ω( )( ) , then RnC  is 
determined approximately as (MPWS, 2006) 
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where ynR  is the nth mode yield reduction factor as defined below, i.e., the nth mode counterpart of the 

first mode yield reduction factor defined in Equation (38) (Figure 4(b)). Post-yield slope p
nλ
( )  is also 

defined below: 
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 (59) 

 Note that the second spectral displacement amplification factor given in Equation (58) is intended for 
higher modes with shorter natural periods where inelastic spectral displacements would be reduced due to 
steeper post-yield slopes of higher-mode capacity diagrams (Önem, 2006). 

4. Treatment of P-Delta Effects in IRSA 

 P-delta effects are rigorously considered in IRSA through straightforward consideration of geometric 
stiffness matrix in each increment of the response spectrum analysis performed. Along the pushover-
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history process, accumulated plastic deformations result in negative-definite second-order stiffness 
matrices, which in turn yield negative eigenvalues, and hence, negative post-yield slopes in the modal 
capacity diagrams of the lower modes. The corresponding mode shapes are representative of the post-
buckling deformation state of the structure, which may significantly affect the distribution of internal 
forces and inelastic deformations of the structure. 
 Analysis of inelastic SDOF systems based on bilinear backbone curves with negative post-yield 
slopes indicate that such systems are susceptible to “dynamic instability” rather than having amplified 
displacements due to the P-delta effects. Therefore, the use of P-delta amplification coefficient (C3

5. Summary of IRSA 

) 
defined in FEMA 356 (FEMA, 2000) is no longer recommended (FEMA, 2005). The dynamic instability 
is known to depend on the yield strength, initial stiffness, negative post-yield stiffness, and the hysteretic 
model of SDOF oscillator as well as on the characteristics of the earthquake ground motion. Accordingly, 
practical guidelines have been proposed for the minimum strength limits in terms of other parameters to 
avoid instability (Miranda and Akkar, 2003; FEMA, 2005). Further research is needed for the realistic 
cases of backbone curves resulting from modal capacity diagrams, which exhibit multiple post-yield 
slopes with both ascending and descending branches. For the time being, equal displacement rule is used 
in IRSA, even when P-delta effects are present, as long as an imminent danger of dynamic instability is 
not expected according to the above-mentioned practical guidelines. 

 The analysis stages to be applied at each piecewise linear pushover step (i) of IRSA are summarized 
below: 
(1) Run a linear response spectrum analysis (RSA) with a sufficient number of modes by considering 

instantaneous second-order stiffness matrix corresponding to the current plastic hinge configuration. 
RSA at each step actually corresponds to performing simultaneous pushover analyses in all modes for 
a unit value of incremental scale factor iF∆ ( )

 . In running RSA, the seismic input is specified in terms 
of initial spectral displacements 1

denS ( ) , which would be the same at all pushover steps according to the 
“equal displacement rule”. They are calculated only once at the first pushover step as elastic spectral 
displacements. Alternatively, compatible spectral pseudo-accelerations i

ainS ( )  defined at each step by 

Equation (46) may be specified as seismic input. All response quantities of interest, ir( ) , are obtained 
by applying an appropriate modal combination rule (e.g., CQC rule in Equation (50)). 

(2) Specialize the generic expression of Equation (51) for the response quantities that define the 
coordinates of the yield surfaces of all potential plastic hinges, i.e., biaxial bending moments and 
axial forces in a general, three-dimensional response of a framed structure. Response quantities due to 
the gravity loading are considered as (0)r  at the first pushover step. Calculate the incremental scale 
factor iF∆ ( )

  according to the yield conditions of all potential plastic hinges and identify the new 
yielded hinge. 

(3) Calculate cumulative scale factor iF ( )
  from Equation (45) and check if it exceeded unity. If 

exceeded, calculate the incremental scale factor pF∆ ( )
  from Equation (55) for the final pushover step 

and carry on according to Equations (56)–(59). If not, continue with the next stage. 
(4) Calculate all response quantities of interest developed at the end of the pushover step from the generic 

expression of Equation (51). If the final pushover step has been reached, terminate the analysis. If not, 
continue with the next stage. 

(5) Modify the current second-order stiffness matrix by considering the last yielded hinge identified at 
Stage (2) and return to Stage (1) for the next pushover step. 

6. Special Cases 

 Single-mode adaptive pushover analysis presented earlier in this paper is a special case of IRSA with 
n = 1. Since no modal scaling is involved in the single-mode analysis, the incremental scale factor iF∆ ( )

  
becomes directly proportional to the modal displacement increment 1

id∆ ( )  as follows (see Equation (43)): 
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 On the other hand, when large values are assigned for yield moments such that no plastic hinging 
occurs, IRSA automatically degenerates to the linear response spectrum analysis (RSA) (see Figure 2(b)). 
These two special cases confirm the generality of the IRSA procedure. 

FURTHER OBSERVATIONS ON OTHER PUSHOVER PROCEDURES 

 For the sake of completeness in covering the multi-mode pushover procedures, two classes of 
methods are briefly highlighted. 

1. Multi-mode Pushover Analysis with Combined Seismic Loads or Displacements 

 It is interesting to note that in a number of multi-mode pushover procedures, e.g., Elnashai (2002), 
Antoniou et al. (2002), Antoniou and Pinho (2004a, 2004b), which employ modal scaling based on 
“instantaneous” elastic spectral quantities (see the discussion on “modal scaling” above), scaled seismic 
loads or displacements are combined with a modal combination rule, normalized, and then are applied to 
the structure at each step to obtain the increments of “combined” pushover curve coordinates. Note that a 
pitfall is inherent in these procedures regarding the application of the modal combination in defining 
applied loads or displacements instead of combining the individual response quantities induced by those 
loads or displacements in each mode (see Chopra, 2001). Thus, individual modal capacity diagrams 
cannot be defined, and consequently, modal peaks and hence seismic demand quantities cannot be 
obtained for a given earthquake, as discussed earlier.  

2. Multi-mode Pushover Analysis without Modal Scaling: Modal Pushover Analysis (MPA) 

 It is worth noting that one of the methods for multi-mode pushover analysis, namely Modal Pushover 
Analysis (MPA), which was developed by Chopra and Goel (2002) based upon earlier studies (Paret et 
al., 1996; Sasaki et al., 1998), completely ignores the modal contributions to the section forces in the 
formation of plastic hinges. Nonlinear response is estimated independently for each mode with a single-
mode pushover analysis based on an invariant load pattern proportional to the initial linear elastic mode 
shape of a given mode. Since modal coupling is ignored, modal scaling is not required. Peak response 
quantities, i.e., modal demands, are obtained for each mode from a SDOF system analysis independently, 
and are then combined (exactly as in the linear response spectrum analysis) with an appropriate modal 
combination rule. It is reported that the above-described MPA procedure is able to estimate story drifts 
with a reasonable accuracy (Chopra and Goel, 2002). However it fails to estimate the locations of plastic 
hinges as well as the plastic hinge rotations and section forces, the essential demand quantities for 
performance assessment in ductile and brittle behaviour modes, for which supplementary analyses are 
needed (Goel and Chopra, 2004, 2005). Recently certain refinements have been made on MPA through 
energy-based development of modal capacity diagrams (Hernandez-Montes et al., 2004; Kalkan and 
Kunnath, 2006). 

EXAMPLES 

 Several examples have already been presented on IRSA applications in previously published material 
(see Aydınoğlu, 2003, 2004). In this paper, some of the results of an ongoing parametric study (Önem and 
Aydınoğlu, 2006) are presented. The 8-, 12-, 16- and 20-storey reinforced concrete frames shown in 
Figure 6 were designed to Turkish Seismic Code (MPWS, 2006) provisions with the characteristics given 
in Table 1. For nonlinear response history analysis, 20 real records with earthquake magnitude between 
6.0 and 7.5 were employed (Table 2). The records were appropriately scaled to match a smoothed elastic 
response spectrum that was also used in the multi-mode pushover analysis by IRSA (Figure 7). Results of 
the nonlinear response history analysis (NRHA), 4-mode IRSA, and single-mode IRSA are presented in 
terms of mean values of story displacements, inter-story drift ratios, and plastic hinge rotations of central 
span beams, as shown in Figures 8, 9, and 10, respectively. The differences between the multi-mode and 
single-mode pushover analyses are clearly visible, especially in story drift ratios and plastic hinge 
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rotations. It is observed that IRSA is able to predict all nonlinear response quantities with a reasonable 
accuracy. 

5 bays @ 5 m each5 bays @ 5 m each5 bays @ 5 m each

16-story

12-story

8-story

5 bays @ 5 m each

 
Fig. 6  Reinforced concrete frames considered in the parametric study 

Table 1: Characteristics of Reinforced Concrete Frames 

Number 
of Stories Story Side Columns 

(cm) 
Internal 

Columns (cm) 
Beam 
(cm) 

8 1–5 45×45 50×50 30×60 
6–8 45×45 45×45 30×60 

12 1–3 55×55 60×60 30×60 
4–12 55×55 55×55 30×60 

16 

1–3 60×70 60×70 30×60 
4–6 60×60 60×60 30×60 
7–9 60×50 60×50 30×60 

10–16 60×40 60×40 30×60 

20 

1–3 70×70 70×70 30×60 
4–6 60×70 60×70 30×60 
7–9 60×60 60×60 30×60 

10–12 60×50 60×50 30×60 
13–20 60×40 60×40 30×60 

 

Table 2: Characteristics of Earthquake Records 

No. Earthquake Mag. Station Dist. 
(km) 

Site 
Cond. 

PGA 
(g) 

PGV 
(cm/s) 

PGD 
(cm) 

1 Chalfant Valley 6.2 54428 Zack Brothers 
Ranch 18.7 D 0.447 36.9 7.01 

2 Chalfant Valley 6.2 54429 Zack Brothers 
Ranch 18.7 D 0.4 44.5 8.56 

3 Loma Prieta, 1989 6.9 APEEL 2, Redwood 
City 47.9 D 0.22 34.3 6.87 
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4 Loma Prieta, 1989 6.9 1686 Fremont, 
Emerson Court 43.4 B 0.192 12.7 5.5 

5 Mammoth Lakes, 
1980 6 54214 Long Valley 

Dam 19.7 A 0.484 14.2 1.77 

6 Mammoth Lakes, 
1980 5.7 54214 Long Valley 

Dam 14.4 A 0.245 18.5 1.56 

7 Mammoth Lakes, 
1980 6 54301 Mammoth 

Lakes H.S. 14.2 D 0.39 23.9 2.72 

8 Morgan Hill, 1984 6.2 47380 Gilroy Array #2 15.1 C 0.212 12.6 2.1 
9 Morgan Hill, 1984 6.2 57382 Gilroy Array #4 12.8 C 0.348 17.4 3.11 

10 Northridge. 1994 6.7 90074 La Habra, 
Briarcliff 61.6 C 0.206 12.3 1.23 

11 Northridge, 1994 6.7 24575 Elizabeth Lake 37.2 C 0.155 7.3 2.7 
12 Northridge, 1994 6.7 24611 LA—Temple 32.3 B 0.184 20 2.74 

13 Northridge, 1994 6.7 90061 Big Tujunga, 
Los Angeles 24 B 0.245 12.7 1.12 

14 Northridge, 1994 6.7 90021 LA—North 
Westmoreland 29 B 0.401 20.9 2.29 

15 Whittier Narrows, 
1987 6 Brea Dam 

(Downstream) 23.3 D 0.313 14.5 0.77 

16 Whittier Narrows, 
1987 6 108 Carbon Canyon 

Dam 26.8 A 0.221 8.7 0.64 

17 Whittier Narrows, 
1987 6 90034 LA—Fletcher 

Drive 14.4 C 0.213 12.6 1.45 

18 Whittier Narrows, 
1987 6 90063 Glendale—Las 

Palmas 19 C 0.296 17.1 1.82 

19 Whittier Narrows, 
1987 6 90021 LA—North 

Westmoreland 16.6 B 0.214 9.7 0.98 

20 Whittier Narrows, 
1987 6 24461 Alhambra, 

Fremont School 13.2 B 0.333 22 2.42 
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Fig. 7 Acceleration response spectra of the normalized records, and their mean superimposed 

on the code spectrum 
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Fig. 8 Mean story displacements estimated by the nonlinear response history analysis (NRHA), 

four-mode IRSA, and single-mode IRSA for the 8-, 12-, 16- and 20-story frames 

 

Fig. 9 Mean story drift ratios estimated by the nonlinear response history analysis (NRHA), 
four-mode IRSA, and single-mode IRSA for the 8-, 12-, 16- and 20-story frames 

 
Fig. 10 Mean plastic rotations of central beams estimated by the nonlinear response history 

analysis (NRHA), four-mode IRSA, and single-mode IRSA for the 8-, 12-, 16- and 20-
story frames 

CONCLUSIONS 

 Incremental Response Spectrum Analysis (IRSA) procedure is presented as a direct extension of the 
linear Response Spectrum Analysis (RSA), which represents an improved multi-mode pushover analysis 
for performance-based nonlinear seismic assessment of existing buildings. The method is based on a 
piecewise linear approach, in which all linear operations are applicable in a piecewise linear pushover 
step in between the formation of consecutive plastic hinges. IRSA can be readily applied to any structure 
in practice where the earthquake input can be specified in the form of a smoothed response spectrum. To 
provide a clear and broader picture to the interested reader, in addition to the multi-mode analysis, single-
mode pushover analyses with adaptive and invariant load patterns are also presented in detail. 
 As discussed in the introductory section of the paper, a clear distinction needs to be made between 
two types of pushover analysis, i.e., whether the analysis is performed for “capacity estimation” only or 
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whether it can be used as well for a “demand estimation” under a given earthquake ground motion. In this 
respect, attention was drawn to the fact that surprisingly a very small number of multi-mode pushover 
methods are available in the literature, which are capable of estimating the seismic demand. 
 Probably one of the most critical issues of almost all multi-mode pushover procedures is the “modal 
scaling”, i.e., the assumption that has to be made for estimating the relative values of the modal 
displacement or modal pseudo-acceleration increments among various modes. In this respect, IRSA 
utilizes a novel approach based on scaling the modal displacements through instantaneous “inelastic 
spectral displacements”. For practical applications this allows the direct use of linear response spectrum, 
thanks to the well-known “equal displacement rule”.  It was shown through a parametric study that IRSA 
is able to provide a reasonable accuracy for all nonlinear response quantities, including story drifts and 
plastic hinge rotations. 
 It should be stressed that all pushover procedures are approximate by nature and that none of them, 
including IRSA, can replace the rigorous nonlinear response history analysis, which is believed to prevail 
in the long run as a preferred engineering tool for seismic demand estimation. In the interim, pushover 
methods are expected to serve as practical nonlinear procedures, through which engineers will become 
acquainted with a realistic nonlinear seismic behavior of structures and which quantify the extent of 
structural damage, alas approximately, induced by a design earthquake. In this respect, it is believed that a 
practical pushover procedure must comply with the code practice, especially in specifying the seismic 
input in the form of a standard elastic response spectrum. This requirement is fully satisfied by IRSA. 
However it must be admitted that the application of IRSA is limited to the far-field earthquakes, as its 
fundamental assumption, i.e., equal displacement rule, is not applicable to the near-field earthquakes. 
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