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COUPLED VIBRATIONS OF A CANTILEVER BEAM' br LINEARLY vmm«;
" CHARNEL CKOSS st:tmon UNDER mmomc zxmnﬂon '
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lntroduction

The analysis presented in this paper consaders s:oupled vnbratlons of a cantilever beam of
linearly varying channel cross section excited by’ the periodic motion of its supporting base,
- The harmonic supporting base motion acts in the direction normal to the beam span as
shown in Fig. | and the shear centre of each cross— section of the beam does not coincide
with the centre of gravity, consequently the torsiona! and bending oscillations are ‘coupled’.
These coupled vibration problems have received less attention so far as compared to
uncoupled one and the study of such simultaneous excitation of two modes, each oscillating
steadily at its own natural frequency, may be of considerable interest in vibration testing
.of actual structures. The method based on Rayleigh’s quotient has been used to obtain
the frequencies of vibrations and the accuracy of the coupled frequency is investigated
by considering the application of the method to the uncoupled vibration. As the cross—
section of the beam varies S,, 1,, J,, [+, are functions of x. o
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Fig. 1 Geometry of system

The Differential Equations

_ The differential equation for the deflected form ol‘ the neutral axis of a bar according to
the eiememary theory of bending is

Where I, and u, are the moment of inertia and the intensity of the distributed load at x.
E and v-are the modulus of rigidity and the deflection of the beam.

If the load is distributed along the centroidal axis, the g;ven load can be replaoed by
the same load distributed along the shear-centre axis, and a:torque of intensity u, 3, distri-

buted along the same axis, where 8 is the dutance between shear centre axis and centroidal
" axis at the point x.

Let the x-axis comcnde mth the shear-cemre axis. Sifce the torsion is not uniform, the
relation bétween the variablé 1" ind the angle of twist 8 is gwen by Timoshenko (1955).
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Wherﬂp.‘Gj. is phe torsional ugd;ty at th«e pmmaq\d Gy is .the wpmg agaphty at the

point x. Differentiatioh of this equauop wnh re!pect to x gives.

¢t {12}-2{= ;’:ﬂ}w.a, | oL@

with the positive torque taken as shown in Fig. 2.
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T (b))

Fig. 2 Deflection and rotation of a cantilever beam from and about elastic axis

: .
For a vibrating bar the intensity of the inertia force is — S, 5—?-5 (v 4 3,0 )

where p is the density and S, the apea of gou-s‘gc[jogl at x and the intemsity of the
inertia moment about the x-axis is

o
- !"‘ Flt)

I., is the mass moment of inertia at x.

The following . d;ﬂ‘erentta! equations for the coupled bendmg and tors:onal vubrauons
are obtained by replacmg the statical ioad in equauons (I) and (2) by the inertia forces.

E%{I;%}z-l’sxsﬁ(\rﬂ‘-k') - A (3!)
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The right hand side of equauon (Sa) represents an inertia loadmg and by cons:dermg lhe
base mouon W T seng and Dugundjs (IQ‘J‘U) the governmg dlﬂ'cremm equations then become

v 3 Wn
E F {I‘ axt} - 5 53 aa (v 3l = oS S

4
where,

¢ % {J' 2_:} T {c, } Sxdi 5 { (v-+ ) + 1.,5_‘!.
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Detcrminnﬂun of Natural Frequencies

o

For all systems subject to harmonic exgitation, the transient vibrations die out within.a
_matter of short time, leaving only the steady state vibrations. Thus in studing forced oscilla-
tions the forcing function should be periodic and when steady state conditions are reached,
the frequency of the motion of the system become the same as that of the forcing function,
. 8o the solutions of equation (4) are taken of the form

v (x,t) = Afy (x} etet
0 (x,0) = Bj (x) elet ' (3)
Ws = AFp, el |

‘where AFo is the forcmg ampluude, @ the frequency of vibration and A and B are
conuams whnch are not mdependent fy (x) and ¢, (x) are functions of x only.

“The funcnons fi (x) and ¢, (x) sausfy all the boundaly conditions of the beam Wthl‘l are
as follows :

o) =) -'o(d) ;-—, (0) =0

. N N O
M=t =20 B o

Submtunon of (5) in (4) gives
. " . ) ; . '
[E ddxl{ll d’rl } - pS,w’_fl = quFoW’] A — pS;:w¥$) B =10

I {3 %“—‘} - 5 [ TR} + sdtewtn + 1t e
. + pS;Bxp’fl A =0 7)
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. are used.

The- eqm ‘are now;pgt:pmm:qf diqﬁﬁwbsnm@k(ﬁi; f-—- ¢ = %

where L :s the length of the beam and (he subsutunons

! ’.* ps L"'r.hps L.:'Cl SQL"I ;%

Equations (7) become. |
[efo-nee g U ~ A G B A (l-—/;f:)
- (71—A~a>{~=f+ -w’nA B(-ABat4B=0 @
H=A Pt f'A+ #{ -0 j}; - A j;} ¢
fo = aer G =5 A 0- e ‘daa} (10 4+ 3 (- AEP g o3 ]B =0

For an approximate determination of the fundaﬁ-nlent'al-fré'quéhcf £ (E) 1; 'c-hosen u:tha
shape function for the - fundatiental mode of - uncoupled bending vibratiois and ¢ {£) as 1he
"shape function for the fowdamiental  mode of uncoupled torsional vibration of a usiform -

“cantllever bedm. These shape fimctions sati'fy the boundary conditions (6) énd are

r (£) = cos h A — cos Af - O (nn h AE — sin AE)

and ¢ (£) = #in T E
Where, A= 1.87510
o = 0,.73410

Equat:on (8) can be solved for w? but the result i isa funcuon of E, and f and ¢ are not
the exact shape function. This difficulty can be overcome Fung (1935) by mulnplymg the
first and the second of eqns. (8) by fand ¢, respectively, and integrating with respect to &

from 0 to 1. The method results in a familiar Rayleigh quotient Collatz (1960) when

’applled to uncoupled problems, and is an extension of Rayleigh’s method. to coupled
problem. The following equations are obtained :

[+ 82+ 23 — (8 + 45} a?] A — ag w? B'am 0 | - (0)
. —ayw‘A-l-[ag—l-ln+lm+an.—amm’]'nﬁ=0
Where, '

B

=a1=ﬁ’[(l AE Efd&,ag=-—6AB‘I(l—/\E)’deE
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0
' 1
a1g = (I¢' + 3 [ (1= AE g2 dE

For a non trivial solution A and B must not bath vanish, consequently the determinant
- of the co-cflicients of eqns. (10) must be zero :

fag + 23 + a3 — (3¢ + a5} w3 — ay “'l -0
—'I';ﬂ. Bs+ﬂg+llo+all—anﬂ
ie. pot —Q a4+ Rm=m0 ooy

P = (aq + a) agg — a¢ 8y
Q = (ar + 23 + ag) ayy + (ag + as + 839 -+ 53) (8, + ag)
- R={(ay +ag+ay) (ag + as + 259 + ay3)
The solutibn‘ of equation (11) is
—'__"'","'""" .
ot 2 E ‘f2QP_ tER - (12)

Wheré:

The nght-hand side of equation (12) is posmve smce it may be shown that Q'-——4
PR > 0.

The smaller ‘of the two values of w? given by eqn. (12) is an upper bound for the.
frequency of the fundamental mode of vibration. The larger of the two w? values is an upper
bound for the next ialgher mode of vibration,

. Numerical Enmple '

A numerical example for the coup!ed torsional v;bmmmof a beam of linearly varying
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cross-seetion is now presemed The frequenc:es are computed from eqn. (|2) and the cross-
section of the blade is taken as a channel section of height bg breadih 2by and thickuess
h as shown in Fig. 3. The physical constants are assumed as follows : )

Fig. 3 Beam of linearly varying channel cross section

L=10in, E=30x1081bfin*, G = l2x_10°lblin', by = .3 in,
h = .25in. p = ,27793 Ibfcm in, Sy = 4boh (1—A &)

Je= 5 boh (1=AE), Ce= g hb® E(1—AB®

I, = ”,52 hbd (1—AES, 1= ohig? (1 AL

With these values the fundamental frequencies for various ratios of $:/Sy and Fo/L have

been tabulated in Table No. | and 2. In Fig. 4 wfow %9 = 0 has been plotted as a function

of S¢/So where wFy/L = 0 is calculated for S;/So = 1, and wFo/L = 0 is the frequency

in the absence of forcing amptitude. In Fig. 5 w/w Fr° == 0 has been plotted as a function
of Fy/L.

Table 1
S¢ ! Square of the fundamental frequency for fixed Fo/L = 2.0
g First root of frequency Second 1oot of frequency
0 w? Seca w] Sec™?
0 27.37491 x 10¢ 58.26221 x 104
0.25 16.43683 x 104 _ _ 121.90009 x 104

p 4

0.50 8.02664 x 108 | 13.39254 x 106
0.7 4.36277 x 10¢ 7.19757 x 106
1.00 2.50004 X 108 4.08832 x 108
1.25 ©1.87260 x 104 2.89634 x 10
1.50 153332 x 108 2.70978 x 10
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Table 2
F Square of the fundamental frequency for fixed 8:/S9 = 0.5
'f First 1001 of Irequency decond root of frequency
@} ‘Sec? w) Sec?
0 8.72041 x 104 14.08213 x 104
1 8.48288 x 104 13:85612 x 104
2 8.02664 x 104 © 13.39254 x 104
3 7.23920 x 104 11.56159 x 10+
4 6.29253 x 104 9.52611 % 104
5 5.44725 x 104 7.22842 x 104
6 4.76475 x 104 4.92870 x 104
io‘jr
TS FIRST ROOT OF FREQUENCY
ool “‘"'.' SECOND ROOT OF FREGUENCY
£
£
8
oo _525 ) o075 160 +25 IISO
S/ Sa ——
Fi6.4 EFFECT OF (ROSS SECTION ON _ FREQUENCY

Discussion and Concluding Remarks

For the uncoupled case (ie. 8 = 0), eqn. (8) are two separate eigenvalue problems
that satisfy 1the conditions of self-adjointness and ful} definitness collaiz (1960). The first
of eqn. (8) when 8; = 0 is
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Wuh boundary eondniom f(O) f'(O) f"(l ) - f"‘(!) -
. This can be written as .
'Um-avm '
Where U and V-are: diﬁ‘emai opcrmou mc} the bouqdny eondﬂiom a8
B (f) = 0 '

Lo A sequence of funr.uom A, fy & caadl < cun be ohmneé from arbitrary fp and nppﬁutmu
of M’Mﬂdar}r vallme pmbieml .

Fol.‘ ---—-—-‘
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[ fi U (f) dE I ka(rH) dE
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'l'he form of the mtegrals ap\pemng in the abovq upru;ippl for )\ 3 may be denoted by
.'Ebﬁ'-l "I 'fg'V'(fk‘_i')‘dﬁf" o E RV
e :
1

b= |GV @SOL2.y
R 0

.1
bex41 = I fyg1 V (fh) . )

am:l are called Schwurz constants Collatz (1960) lnd A1, is the quotient of two successive
Schwarz constants _
: bn-1 ' :

f\l-lmxﬁ

The quotients pgy_3 == bn—al"'ﬁ-n pex = bp-q/by, peyy = bu/bgeyz ... ... are known as
Schwarz’s quotients collatz (1960) and the even numbered ‘quotients are identical with

Rayleigh’s quotients. :
Bounds for the first eigenvalue w,® can be obtamed from the quouenu B Pt and iy

where /3 is the lower bound for the second e:genva]ue and such that /3 > w3 The bouads
- are given by Collatz (1960).

poiy = _IL—&*I < "’l' < B (k = |, 2 3, )

- —1
Hryl

For the numeﬂcal oomputauon of tha quotients fj is: uken as’ lhe shapn funcuon for the
free vnbranon of a beam of lmear]y varymg cros:-secnon l.hat is
fy cosh 1-&751 g~ cos 1‘8751 £~ 07341 (smh I.875l E- — sin §, 8?51 £y

#undis a non-zero ‘fundtion and: satisfies ‘all boundnry conditions and possesses continuous
derivatives,

Also, . a-funciion fy-sruch that
U ) =V -
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o 'ﬁ’[(l-—f\ﬁ':;?ﬁ,/\(ITA_E-)§:+.6 At ] =6

can be readily obtained. S T T A

, In this special eigenvalue problem with V (f).the condition K
3

(v abie]osma
0 .

e a2 lg i I T T g e wrady wlt A I R L ST
« “js'satiified and according to Coilat { 1960] £, need nat satisfy any Boundary conditions.

Using the same numeiical values for the physical, constants of the beam already '

-~ £ - H S

considered but with 3, == 0 and for S;/Sg = .75 Schwarz constants and quotients are

1 B
bo = I f'dE . = 51.12323 x 108.
0 ‘ : '

1
by = [ fo fi dB = 11.43308 x 104 .

]
by = of (1_,\5)( f + F—L°)f1 &g - 2.5_6.314

sy :"f' = 447169 X 104

| mo= gl = 446058 x 104
and.an upper bound is ' . o
12 rg D wtie. 447169 X 106 > 4:46058 x 108 3 ot

- For calculating lower bound from thie expreéssiois: ug —*@ﬁm)ﬂ&lh— 1), € w,t, it is not
essentinl to_have a close lower bot;nd Iy for the aecondreigém.mlue and even a rough value
for l3 is justified since changes in /4 have itsle effect on the lower bound calculated from the
“dbave exprédsion when /g ii'appmb{y greateritanjog. - i - :

Further it ia quite 1e_dson_£tﬂé to iﬁﬁmé that for ﬂexuralwbrnuom, the second cigenvalue

for free ibration: of the rotating beam of linearly varying cross-section is a good enough

_.approximation for -the lower, bpgn;jwqf-.thq,second:eigmwlue of-eantilever heam. Henee
calculated value for /g is 18.62117 X 104 sec-t. , C

Thus the frequency for fundamental mode of uncoupled vibration;: is bounded as
445707 X 108 sec-2 Qut € 4.46058 X 104 st - :

Ry
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The above result shows that the method provided very narrow limits for fundamenta)
frequency of uncoupled vibrations in the presence of base motion.

*The fundamental frequency for coupled vibration could not be bounded at present, but -
the above computation indicates that Rayleigh’s quotient obiained from the shape function
fi is a very close upper bound for the first eigenvalue ,3 for the uncoupled problem,
Consequently, it seerhs reasonable to believe that the method results in a close upper bound
for the fundamental frequency for the coupled problem especially if 3 is small.
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