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ABSTRACT 

 A mode acceleration formulation is presented for the transfer function of absolute acceleration 
response of a single-degree-of-freedom oscillator which is supported on a base-excited, classically 
damped and flexible-base primary system. The primary system response has been described in terms of 
fixed-base primary mode shapes, with the response in last few modes assumed to be pseudo-static. Base 
flexibility has been assumed to be described by complex-valued impedance functions, and the effects of 
kinematic interaction have been assumed to be negligible. The proposed formulation can be used within 
the framework of any power spectral density function-based random vibration approach to generate floor 
response spectra of desired level of confidence. A numerical study is carried out with the help of an 
example primary system and band-limited white noise to illustrate the proposed formulation. It has been 
shown that the proposed formulation gives very accurate estimates of floor response spectra if pseudo-
static response is assumed to be in those primary modes only which are stiff enough to the base 
excitation. It has also been shown that neglecting soil-structure interaction may give too over-
conservative or unconservative estimates, depending on the damping ratio, natural period, and location of 
the oscillator, energy distribution in the excitation process, and shear wave velocity of soil.  

KEYWORDS: PSDF-Based Seismic Response, Floor Response Spectra, Mode Acceleration Approach, 
Soil-Structure Interaction  

INTRODUCTION 

 In major industrial structures, such as nuclear power plants, secondary systems (e.g., electrical and 
mechanical equipment) often play a critical role in maintaining the operation or safety immediately after 
an earthquake. Hence, it is important to ensure the seismic safety of such systems when those are 
designed. It has been an accepted practice to check the seismic safety by generating floor response spectra 
for specified seismic hazard at the site of the primary system.  
 The conventional approach of generating floor response spectra (e.g., see Singh (1975, 1980a)) does 
not consider (i) dynamic interaction between the primary system and oscillator, and (ii) non-classical 
damping of the combined system. Dynamic interaction is significant when the oscillator is moderately 
heavy and is tuned to one of the natural frequencies of the primary system. Different energy absorption 
properties of the primary system and the oscillator lead to a non-classically damped combined system 
with complex-valued mode shapes, even though the primary system is assumed to be classically damped. 
Ignoring these effects often leads to overconservative designs, and, thus, a coupled analysis becomes 
necessary for accurate results in case of moderately heavy to heavy equipments. Coupled analysis 
approaches based on the state space approach of Foss (1958), e.g., those by Itoh (1973), Singh (1980b), 
Traill-Nash (1981), Igusa et al. (1984), Borino and Muscolino (1986), Veletsos and Ventura (1986) are 
not practical, and, thus, approximate approaches like perturbation approach and mode synthesis approach 
(see, for example, Sackman and Kelly (1979), Sackman et al. (1983), Igusa and Der Kiureghian (1985), 
Suarez and Singh (1987a, 1987b), and Perotti (1994)) using real eigenproperties of the primary system 
have been developed. Most of these approaches, though elegant, are applicable for light secondary 
systems and consider the combined system to be classically damped. Chen and Soong (1994) and Gupta 
(1997) have proposed simple approaches in which the modal properties of the combined system are not 
explicitly calculated.  
 The above approaches of floor spectra generation have not considered the effects of soil-structure 
interaction. Interaction of the foundation with the surrounding soil medium may alter the seismic response 
of the structure through alterations in the frequencies and damping of the structure-foundation system. 
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Values of the system frequencies are lowered depending on how stiff the structure is with respect to the 
soil. This study proposes a formulation for the absolute acceleration response transfer function of a single-
degree-of-freedom (SDOF) oscillator which can then be used to generate stochastic floor response spectra 
within the framework of a power spectral density function (PSDF)-based random vibration approach. The 
oscillator is considered to be supported on a base-excited, classically damped and flexible-base primary 
system. The proposed formulation extends the fixed-base formulation of Gupta (1997) to include the 
effects of soil-structure interaction by using the sub-structure approach. The primary system response is 
thus expressed in terms of fixed-base primary modes, and the foundation and the primary system are 
treated as two separate dynamic units, with the interaction forces of equal magnitude acting in opposite 
directions on the two sub-systems. The force-deformation relationships and damping characteristics of the 
foundation are described by the complex-valued impedance functions which are obtained independently 
as functions of the properties of the layered soil medium and geometry and depth of embedment of the 
foundation (see, e.g., Wong and Luco (1978)). The primary system response in the last few (fixed-base) 
modes is approximated to be pseudo-static, thus making the determination of these modes to be 
unnecessary. This approach, called as the mode acceleration approach, allows us to consider dynamic 
response in those modes only which are not stiff enough to the excitation process. The proposed 
formulation is illustrated by generating floor response spectra in case of a 15-story shear building 
subjected to a band-limited white noise base excitation, for different values of shear wave velocity, 
number of dynamic modes, location of oscillator, and oscillator damping ratio.  

PROPOSED FORMULATION 

 Let us consider the n-degree-of-freedom (DOF) “stick” model of a linear, classically damped primary 
system supporting a SDOF oscillator along its pth DOF. Let { ( )}X t  denote the vector of displacements 
along the DOFs of the primary system relative to the foundation, and ( )u t  denote the displacement of the 
oscillator relative to the pth primary DOF. The foundation is considered to be a rigid rectangular slab of 
negligible thickness and attached to the surface of a uniformly visco-elastic half-space. The foundation 
input motion is assumed to be same as the free-field ground motion, ( )z t&& , and, thus, the free-field 
rocking and the effects of kinematic interaction are assumed to be negligible. Let the foundation undergo 
translation, 0 ( )z t , and rotation, 0 ( )tθ , relative to the surrounding soil medium (see Figure 1). Thus, by 
using the sub-structure approach, the decoupled primary system may be considered as subjected to (i) 
base excitations, 0( ( ) ( ))z t z t+&& &&  and 0 ( )tθ&& , (ii) interaction force, ( )v t , acting at the attachment point of 
the oscillator, and (iii) to the interaction forces between the foundation and the half-space, i.e. to the base 
shear, ( )sV t , and the base moment, ( )sM t .  

 The equations of motion for the decoupled primary system may be written as  

 0 0[ ]{ ( )} [ ]{ ( )} [ ]{ ( )} [ ]{1}( ( ) ( )) [ ]{ } ( ) { ( )}M X t C X t K X t M z t z t M h t f tθ+ + = − + − +&&&& & && &&   (1) 

where [ ]M , [ ]C  and [ ]K , respectively, represent the mass, damping and stiffness matrices of the 
primary system, { ( )}X t  is measured relative to the foundation slab, {1} denotes the unit vector, and the 
elements of vector, 1 2{ }( { } )T

nh h h h= .... , denote the heights of the primary masses, 1M , 2M , ..., nM , 
above the base. Since the oscillator is connected along the pth DOF, the pth element, ( )v t , of { ( )}f t  is 
the force applied by the oscillator on its support point, and the remaining ( 1)n −  elements are zeroes. 

( )v t  is given by ( ( ) ( ))s sC u t K u t+& , where sC  and sK , respectively, are the damping constant and 
stiffness of the element connecting the oscillator mass to the primary system along the pth DOF, and ( )u t  
is measured relative to the pth primary DOF. Let the primary system response be expanded in terms of the 
orthonormal mode shapes of the fixed-base system, i.e.  
 { ( )} [ ]{ ( )}X t q tφ=   (2) 
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Fig. 1  Idealized n -DOF primary system-foundation system  

 where [ ]φ  is the real-valued modal matrix of the fixed-base primary system, and { ( )}q t  is the vector of 
normal coordinates. By using the orthogonality relationships, the decoupled equation for response in the 

thr  primary mode can be written as  

 2 ( )
0 0( ) 2 ( ) ( ) ( ( ) ( )) ( ) ( );r

r r r r r r r r pq t q t q t z t z t t v tζ ω ω α γ θ φ+ + = − + − +&&&& & && && 1 2 ,r n= , ,...  (3) 

where ( )( { } [ ]{1})r T
r Mα φ=  is the modal participation factor for the base translation, 

( )( { } [ ]{ })r T
r M hγ φ=  is the modal participation factor for the base rocking, rω  and rζ  respectively are 

the natural frequency and damping ratio, and ( )r
pφ  is the pth element of mode shape, in the thr  (fixed-

base) mode of the primary system. On substituting the expression of ( )rq t , as in Equation (3), in 
Equation (2), the displacement response along the pth primary DOF can be expressed as  
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The first sum here represents the quasi-static part, ( )psX t , and this can alternatively be obtained from 
Equation (1) by dropping the first two terms on the left hand side. The second part may be approximated 
by considering first ˆ( )n n<  modes only, and, thus, ( )pX t  may be expressed in Fourier-transformed 
frequency domain as  
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Here iM  is the ith diagonal element of the diagonal matrix [ ]M , and piF  is the element corresponding to 

the pth row and the ith column of the flexibility matrix, 1[ ]( [ ] )F K −=  of the primary system. Further, 
( )pX ω , ( )z ω&& , 0 ( )z ω&& , 0 ( )θ ω&& , ( )v ω , and ( )rq ω  represent the Fourier transforms of ( )pX t , ( )z t&& , 

0 ( )z t&& , 0 ( )tθ&& , ( )v t , and ( )rq t , respectively. ( )rq ω  is obtained on Fourier-transformation of Equation (3) 
as  

 ( )( )
0 0( ) ( ) ( ( ) ( )) ( ) ( ) ; 1 2 ,r

r r r r pq H z z v r nω ω α ω ω γ θ ω φ ω= − + − + = , ,...&&&& &&  (6) 

where  

 2 2

1( )
2r

r r r

H
i

ω
ω ω ζ ω ω

=
− +

  (7) 

represents the modal transfer function relating the displacement of the SDOF oscillator in the thr  (fixed-
base) primary mode to the input ground acceleration. On using Equation (6), Equation (5) may be 
expressed as  

 0 0( ) ( )( ( ) ( )) ( ) ( ) ( ) ( )p p p ppX B z z Y D vω ω ω ω ω θ ω ω ω= − + − +&&&& &&   (8) 

where  
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and  
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represent the transfer functions of the displacement response along the pth DOF for the translational and 
rocking accelerations, respectively, at the base of the fixed-base primary system, if the interaction forces 
between the primary and secondary systems are ignored. Further,  
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2 ( )
2

1
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p r
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D F i H
φ

ω ω ζ ωω φ ω
ω=

= + −∑   (11) 

represents the transfer function of the same response (of the fixed-base primary system) when a force is 
applied along the kth primary DOF, and both ground excitation and secondary system are absent. On 
taking n̂  = n , all three transfer functions take the following exact forms,  

 ( )
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=∑   (12) 
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requiring the determination of all n  primary modes. It is, therefore, simpler to use the approximate 
expressions given by Equations (9)–(11) when n̂  << n .  

 In order to determine the interaction accelerations, 0 ( )z ω&&  and 0 ( )θ ω&& , in Equation (8), we consider 
the complete primary structure-foundation system in translation and rotation and write the equations of 
equilibrium in frequency domain involving interaction forces, ( )sV ω  and ( )sM ω , primary system 
displacements and interaction forces from the secondary system. On expressing the interaction forces in 
terms of interaction accelerations and on using Equation (8) for system displacements, two simultaneous 
equations are obtained in 0 ( )z ω&&  and 0 ( )θ ω&&  (see Dey and Gupta (1999) for details). Solving those leads 
to  

 (1) (2)
0 ( )( ) ( ) ( ) ( ) ( )zz zzz z vω χ ω ω ω χ ω= +&& &&   (15) 

 (1) (2)
0 ( )( ) ( ) ( ) ( ) ( )z zz vθ θθ ω χ ω ω ω χ ω= +&& &&   (16) 

where (1) ( )zzχ ω  and (1) ( )zθχ ω , respectively, represent the transfer functions relating the interaction 

accelerations, 0 ( )z ω&&  and 0 ( )θ ω&& , to the input ground acceleration, ( )z ω&&  (in the absence of the 

oscillator). The terms, (2)
( ) ( )zzχ ω  and (2)

( ) ( )zθχ ω , denote the transfer functions relating the interaction 

accelerations to the interaction force, ( )v ω , acting at the pth attachment point of the oscillator (in the 
absence of the ground excitation). Expressions for these transfer functions are given in the Appendix. On 
substituting 0 ( )z ω&&  and 0 ( )θ ω&& , as in Equations (15) and (16), into Equation (8), and since 

( ) ( ) ( )s sv i C K uω ω ω= + , the displacement response of the pth primary DOF is obtained as  

 ( ) ( ) ( ) ( ) ( ) ( )p p s s ppX B z i C K D uω ω ω ω ω ω′ ′= − + +&&   (17) 

where 

 (1) (1)( ) (1 ( )) ( ) ( ) ( )p zz p z pB B Yθω χ ω ω χ ω ω′ = + +   (18) 

and  

 (2) (2)
( ) ( )( ) ( ) ( ) ( ) ( ) ( )pp pp zz p z pD D B Yθω ω χ ω ω χ ω ω′ = − −   (19) 

are the modified forms of the transfer functions, ( )pB ω  and ( ),ppD ω  respectively, to account for the 
effects of translation and rotation of the foundation relative to the soil. As soil becomes stiffer with 
respect to the primary system, sχ  tend to zero, and then, these functions approach ( )pB ω  and ( )ppD ω , 
respectively, as defined for a fixed-base primary system. Further, in Equation (17), ( )u ω  is the Fourier 
transform of ( )u t .  

 Equation (17) describes how the primary system displacements depend on the input (free-field) 
ground excitation (see the first term) and on the oscillator displacement (see the second term). For the 
latter, we write the equation of motion for the decoupled oscillator (Gupta, 1997) as 

 2
0 0( ) 2 ( ) ( ) ( ) ( ) ( ) ( )s s s p pu t u t u t X t z t z t h tξ ω ω θ+ + = − − − − &&&&&& & && &&   (20) 

where sω  and sξ  denote the natural frequency and damping ratio of the oscillator, respectively. Height of 
the oscillator mass above the base of the primary system has been assumed here to be same as ph . On 

Fourier-transforming this equation, using Equations (15) and (16) for 0 ( )z ω&&  and 0 ( )θ ω&&  respectively, and 
on taking ( ) ( ) ( )s sv i C K uω ω ω= + , the oscillator displacement may be expressed as  
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 ( ) ( ) ( ) ( ) ( )p p pu A X E zω ω ω ω ω= + &&   (21) 

where ( )pA ω  represents the transfer function relating oscillator displacement to the displacement of the 

pth primary DOF in the absence of the ground excitation, and ( )pE ω  represents the transfer function 
relating oscillator displacement to the ground acceleration when the oscillator is supported on a rigid 
primary system. These transfer functions are given by  

 
2

(2) (2)
( ) ( )
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s
p

zz p z s s s

hA
h i C K hθ

ω ωω
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 (22) 
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 (23) 

where ( )sh ω  = 2 2 1( 2 )s s siω ω ξ ω ω −− +  is the transfer function relating the secondary system 
displacement to the input base excitation. On substituting the expression of ( )u ω , as in Equation (21), in 
Equation (17), ( )pX ω  becomes  

 ( ) ( ) ( )p pX H zω ω ω′= &&  (24) 

with  

 
( ) ( ) ( ) ( )

( )
1 ( ) ( ) ( )
p s s pp p

p
s s pp p

B i C K D E
H

i C K D A
ω ω ω ω

ω
ω ω ω

′ ′− + +
′ =

′− +
 (25) 

It may be observed that neglecting dynamic interaction between the primary system and the oscillator 
leads to ( ) ( )p pH Bω ω′ ′= − . In view of Equation (24), ( )u ω  finally becomes  

 ( ) ( ) ( )u h zω ω ω′= &&  (26) 

with ( )h ω′  = ( ) ( ) ( )p p pA H Eω ω ω′ + . Now, since 2 2
0( ( ) ( ) ( ) ( )pu X z zω ω ω ω ω ω− − + + +&& &&  0 ( ))ph θ ω&&  

represents the absolute acceleration response of the oscillator, the transfer function, ( )ψ ω , relating this 
response to the ground acceleration may be expressed as  

 
(1) (1) (2) (2)
( ) ( ) ( ) ( )

2

( ) 1 ( ( ) ( )) ( ( ) ( ))( ) ( )

( ( ) ( ))
zz p z zz p z s s

p

h h i C K h

h H
θ θψ ω χ ω χ ω χ ω χ ω ω ω

ω ω ω

′= + + + + +

′ ′− +
 (27) 

It may be observed here that the terms, (1) (1)
( ) ( )( ( ) ( ))zz p zh θχ ω χ ω+  and (2) (2)

( ) ( )( ( ) ( ))(zz p z sh i Cθχ ω χ ω ω+ +  

) ( )sK h ω′ , respectively, represent the contributions of the primary system and the oscillator due to 

foundation translation and rocking; and the term, 2 ( ( ) ( ))ph Hω ω ω′ ′+ , is due to the flexibility of primary 
system plus oscillator.  
 An alternative formulation for the transfer function may be obtained by expressing ( )v ω , instead of 

( )u ω  (see Equation (21)), in terms of ( )pX ω  and ( )z ω&& , and by following the same steps as before:  

 1

2

( )( )
( )

ψ ωψ ω
ψ ω

=   (28) 

with  

 
( )
{ }

2 2 (1) (1)
1 ( ) ( )

2 (2) (2)
( ) ( )

( ) 1 ( ) ( ) (1 ( ) ( ))

1 (1 ( ))( ( ) ( ))

s p zz p z

s s zz p z

h B h

M h h

θ

θ

ψ ω ω ω ω ω χ ω χ ω

ω ω χ ω χ ω

′= + + + +
× + + + 

 (29) 

and  

 ( )( )2 (2) (2) 2
2 ( ) ( )( ) 1 1 ( ) ( ) ( ) ( )s s zz p z ppM h h Dθψ ω ω ω χ ω χ ω ω ω′= + + + −   (30) 
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This formulation explicitly involves the oscillator mass, sM , and leads to the following transfer function 
in case of the fixed-base primary system (Rao, 1998),  

 
( )( )

( )
2 2

2 2

1 ( ) 1 ( )
( )

1 ( ) 1 ( )
s p

s pp s

h B

M D h

ω ω ω ω
ψ ω

ω ω ω ω

+ +
=

− +
  (31) 

 Once the transfer function relating the absolute acceleration response of the oscillator to the ground 
acceleration is determined, the PSDF of the oscillator response process may be obtained, by using the 
stationary random vibration theory, as squared modulus of the transfer function multiplied by the PSDF 
of the ground acceleration process (Crandall and Mark, 1963). The input PSDF may be taken as an 
idealized PSDF in a functional form (e.g., band-limited white noise, or Clough-Penzien PSDF (Clough 
and Penzien, 1993)) for studying the system behaviour, or as design spectrum-compatible PSDF (e.g., see 
Unruh and Kana (1981)) in order to account for the non-stationary nature of the output process and thus to 
obtain results for the practical situations. The area under the response PSDF gives the mean-square value 
of the response process, the square root of which may be multiplied with a suitable peak factor to estimate 
the largest peak in the response process (see Gupta (2002) for further details). This peak value forms one 
ordinate of the floor response spectrum for damping ratio sξ . By varying sω , the complete curve for sξ  
may be obtained, and by considering different values of sξ , a set of floor response spectra may be 
generated.  
 

 
Fig. 2  Comparison of exact and proposed floor response spectra for n̂  = 4  

RESULTS AND DISCUSSION 

 The proposed formulation has been illustrated by considering a 15-story shear building. Floor mass is 
taken as 52 8 10. ×  kg for the first floor and 52 0 10. ×  kg each for all other floors. The inter-story stiffness 
is taken as 63 5 10. ×  kN for the first story and 63 15 10. ×  kN each for all other stories. The corresponding 
fixed-base natural frequencies are obtained as 12.79, 38.17, 62.95, 86.75, 109.30, 130.54, 150.58, 169.51, 
187.15, 203.18, 217.27, 229.14, 238.59, 245.45 and 249.60 rad/s. The modal damping ratio is assumed to 
be 0.05 for all the modes of the building. The story height is considered to be 3.5 m for the first story and 
3.0 m each for all other stories. The mass moments of inertia of the floor masses, i.e. sjI , are assumed to 
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be negligible. The foundation is assumed to be a square-shaped slab with length of reference, L  = 9 m, 
and of negligible mass as compared to the masses of the floors. Impedance functions are taken for the 
uniform visco-elastic half-space with the mass density, ρ , hysteretic damping ratio, ζ , and Poisson’s 
ratio, ν , equal to 1800 kg/ 3m , 0.02 and 0.3, respectively. The oscillator is assumed to be of 200 kg mass 
and supported at the first floor. The oscillator damping ratio is assumed to be 0.02.  
 

 
Fig. 3  Percentage error spectra in case of proposed floor response spectra for n̂  = 1, 2 and 3  

 To generate floor response spectra, the building is assumed to be excited by a band-limited white 
noise process with 0.005 2m / 3s  intensity within a band of 0.5-100.5 rad/s. Peak factor is assumed to be 
3.0, and, thus, the example excitation corresponds to a peak ground acceleration of 0.2162g. Figure 2 
shows a comparison of the proposed floor response spectrum (F.R.S.), obtained by ‘truncating’ last 11 
primary modes (i.e., n̂  = 4), with the exact spectrum (i.e., n̂  = 15), for the shear wave velocity equal to 
600 m/s. It may be observed that all 11 primary modes which are stiffer than the excitation process have 
been assumed to respond pseudo-statically. Figure 2 shows that the proposed formulation gives excellent 
approximation of floor response spectra for oscillator frequencies less than 70 rad/s. The proposed 
spectrum however deviates from the exact spectrum for stiffer oscillators. In order to appreciate the 
resulting errors for such oscillators, we consider the band-limited excitation in the range of 0.5–30.5 rad/s, 
and obtain the variation of percentage error associated with ‘proposed’ F.R.S. with time period for the 
fixed-base condition. Figure 3 shows such variations, being called as percentage error spectra, for n̂  = 1, 
2 and 3. Negative errors here indicate that the F.R.S. ordinates estimated by the proposed formulation are 
less than the exact ordinates. The errors are observed to be maximum for n̂  = 1 and when the oscillator is 
at the upper cut-off frequency of the excitation. The errors remain negligible when the oscillator is more 
flexible compared to the first primary frequency. However, as the oscillator becomes stiffer and its 
frequency approaches the second primary frequency, the oscillator gets more tuned with the second mode, 
thus leading to an increased participation of this mode. Ignoring the dynamic response in the second mode 
therefore leads to greater error in the transfer function for the frequencies between the oscillator 
frequency and the second primary frequency. Greater is the tuning, more is this error. The effect of this 
error on F.R.S. ordinates however does not increase further as soon as the oscillator frequency exceeds 
the upper cut-off frequency of the excitation. This happens because the frequencies falling between the 
oscillator frequency and the second primary frequency are no longer excited by the excitation. In fact, a 
sudden fall is observed in the percentage error as the oscillator frequency increases and the frequencies 
significantly affected by the oscillator tuning with the second and higher (pseudo-static) modes move 
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away from the frequency band of excitation. The percentage error however stabilizes beyond certain 
oscillator frequency (i.e., at lower time periods), due to ignoring the dynamic response of those primary 
modes (second, third, …) which are not sufficiently stiff to the excitation. It may be noted that these 
modes have increased participation due to the oscillator becoming stiffer compared to those modes. In the 
cases of n̂  = 2 and 3, the stabilized error becomes lesser as the dynamic response of more higher modes 
is accounted for. Also, the two dashed curves for these cases show much lesser maximum errors (at the 
upper cut-off frequency of the excitation) since, at this frequency, the oscillator is not tuned to the third 
primary mode (in case of n̂  = 2) or to the fourth primary mode (in case of n̂  = 3) as strongly as it was 
tuned to the second primary mode in the case of n̂  = 1.  

 
Fig. 4  Comparison of the normalized Fourier spectra of the El Centro (EL), Parkfield 

(PK), and Mexico City (MX) ground motions  
It may be mentioned that the above observations do not change when the upper cut-off frequency of 

the excitation is raised to 38.0 rad/s (from 30.5 rad/s) which is very close to the second natural frequency 
(i.e., 38.17 rad/s) of the primary system. However, a different picture emerges when, instead of the band-
limited white noise process, we consider realistic ground motion processes corresponding to (i) recorded 
S00E component of Imperial Valley earthquake of 18 May 1940 at El Centro site, (ii) recorded vertical 
component of Parkfield earthquake of June 1966 at Cholame, Shandon site, and (iii) synthetic 
accelerogram for the horizontal component of Michoacan earthquake, 1985 at Mexico City site (Gupta 
and Trifunac, 1990). The Fourier spectra of these ground motions, as normalized to the respective 
maximum amplitudes, are shown in Figure 4. It may be observed from this figure that the Parkfield 
motion is rich in high-frequency waves compared to El Centro motion, and Mexico City ground motion is 
dominated by low-frequency waves. The three example processes correspond to the percentage error 
spectra for n̂  = 1, as shown in Figure 5 by EL, PK and MX respectively, when the three processes are 
characterized by the spectrum-compatible PSDFs, as obtained in Ray Chaudhuri and Gupta (2002). For 
comparison, Figure 5 also shows the ‘1 Mode’ curve of Figure 3, describing the error variation for the 
band-limited white noise excitation (see the WN curve). It is seen that in the absence of an upper cut-off 
frequency, as the oscillator frequency approaches the second primary frequency from below, the 
percentage error continues to rise till the second primary frequency for all three realistic excitations. In 
case of n̂  = 2, however, the error would rise to a local peak at the third primary frequency from a 
negligible value at the second primary frequency. Figure 5 also shows that in contrast with the WN curve, 
the error spectra curves for the realistic excitations do not fall off to stabilized values for very stiff 
oscillators. This again happens due to the absence of an upper cut-off frequency and a wider range of 



108 Mode Acceleration Approach for Generation of Floor Spectra 
 Including Soil-Structure Interaction 

 

 

frequencies getting excited, and, therefore, we get local error peaks at the primary system frequencies. We 
also get a local peak in between two adjoining primary system frequencies. This happens due to a local 
minimum in the exact F.R.S. ordinate at the corresponding frequency (see Figure 2) while the F.R.S. 
based on the use of pseudo-static modes for those primary system frequencies fails to capture this trend. 
The local peaks in between the primary system frequencies appear to increase in magnitude for stiffer 
oscillators, due to the increased participation of those ‘pseudo-static’ modes (second, third, …) which are 
more flexible compared to the oscillator. However, a sudden fall-off is observed for the oscillators having 
periods less than 0.04 s, just as it was observed in case of the band-limited white noise (for the oscillators 
having natural frequencies greater than the upper cut-off frequency of the excitation). This is due to the 
fact that the PSDFs of the realistic excitations are assumed to have no energy beyond 157 rad/s, and, thus, 
157 rad/s effectively becomes the upper cut-off frequency for the realistic excitation processes as 
considered in this study. 

 

 
Fig. 5  Percentage error spectra in case of proposed floor response spectra for the El Centro 

(EL), Mexico City (MX), Parkfield (PK), and white noise (WN) excitation processes  
 Returning to Figure 3, the maximum percentage error at the upper cut-off frequency as observed here 
is going to be more when the oscillator is placed at those floors where there is a greater interaction of 
oscillator with the second mode. Figure 6 shows a comparison of the errors for the 1st floor location with 
those for the 4th and 7th floor locations in case of n̂  = 1. It is seen that the maximum error increases from 
10% to more than 30% for the 4th floor location and that the stabilized percentage error in case of the 7th 
floor location is zero. The latter observation implies that the second mode has negligible participation in 
the oscillator response, when it is placed at the 7th floor. In order to see how far the flexibility of the base 
affects the observations of Figure 3, we compare the percentage error spectra for shear wave velocity,    
β  = 100, 200, and 1000 m/s in case of n̂  = 1 (see Figure 7). Though the value of β  = 100 m/s is 
inconsistent with the type of foundation we have assumed in the paper, this has been chosen to emphasize 
the effects of shear wave velocity on the errors associated with the ‘mode truncation’. Further, it may be 
mentioned that the error spectrum for β  = 1000 m/s is almost identical to that for the fixed-base 
condition, as at this value of β , there is a negligible soil-structure interaction. It is seen in Figure 7 that 
while the error spectra for β  = 200 and 1000 m/s show the same trends as for the fixed-base, the error 
spectrum for β  = 100 m/s shows a shift to the right in the peak for the maximum error. This peak 
corresponds to the decreased second primary frequency (due to base-flexibility) which now falls within 
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the frequency band of the excitation. For stiffer oscillators, the error spectrum shows the same trends as 
seen earlier (see Figure 5), with a transition to positive error peak at the upper cut-off frequency, as the 
oscillator frequency is increased, and then the fall-off to a stabilized value for frequencies greater than the 
upper cut-off frequency. 
  

 
Fig. 6  Percentage error spectra in case of proposed floor response spectra for the 

oscillator on 1st, 4th and 7th floors  

 
Fig. 7  Percentage error spectra in case of proposed floor response spectra for β  = 100, 

200 and 1000 m/s  
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Fig. 8  Comparison of exact floor response spectra for β  = 100, 300 and 600 m/s  

 

 
Fig. 9  Percentage error spectra due to fixed-base assumption in case of β  = 100, 300, 

600 and 1000 m/s  
 The above observations imply that the proposed formulation is capable of giving quite accurate F.R.S. 
ordinates as long as n̂  is carefully chosen. It appears that this should be so large as to include all modes 
falling within the frequency range of excitation plus 1–2 next higher modes, provided the oscillator is stiff 
to the excitation. However, if the oscillator frequency falls within the frequency range of excitation, it 
may be enough to take as many modes as are necessary to contain the oscillator frequency. Thus, in the 
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present case, 5 modes may be sufficient (i.e., n̂  = 5), if the oscillator frequency is less than 109.3 rad/s 
and the excitation range extends beyond 109.3 rad/s. In other words, only those modes should be assumed 
to respond pseudo-statically which are sufficiently stiff (after accounting for the base flexibility) to the 
more flexible of the oscillator and the excitation.  
 
 

 
Fig. 10  Percentage error spectra due to fixed-base assumption in case of oscillator on 1st, 

4th, 7th and 15th floors  
 In order to see how the shear wave velocity (representing the level of soil interaction) affects the 
F.R.S., a comparison of the proposed spectra for β  = 100, 300 and 600 m/s in case of n̂  = 15 is shown in 
Figure 8 for 0.5–100.5 rad/s band-limited white noise excitation. It is obvious that the peaks 
corresponding to the first two primary natural frequencies shift towards right as a result of soil interaction, 
with this shift being more in case of the fundamental frequency. Increased interaction may also lower 
various peaks significantly. As a result, there may be considerable underestimation or overestimation 
(depending upon the frequency of the oscillator) if the effects of soil interaction are ignored. To illustrate 
this, we compare the percentage error spectra for β  = 100, 300, 600 and 1000 m/s in Figure 9, where the 
percentage error refers to the error associated with the fixed-base assumption of a flexible-base primary 
structure. It is seen that while the errors are small for β  = 1000 m/s case, those may be as large as 120% 
in case of β  = 100 m/s. This implies that unless the soil is reasonably stiff relative to the primary system, 
the soil flexibility must be accounted for in estimating the F.R.S. The maximum error may increase to a 
very high value for a different location of the oscillator as shown by Figure 10 for 1st, 4th, 7th and 15th 
floor locations in case of β  = 100 m/s. This may however reduce in case of higher oscillator damping as 
shown by Figure 11 for the damping values of 2%, 5%, 7% and 10%. This is also dependent on the 
excitation process as shown by the comparison of the percentage error spectrum for the band-limited 
white noise (WN) process (with β  = 100 m/s, 2% oscillator damping, first floor location of the oscillator, 
and n̂  = 15) with the error spectra for the El Centro (EL), Mexico City (MX), and Parkfield (PK) 
processes (see Figure 12). It may be observed here that the fixed-base assumption is not as critical in case 
of the Mexico City process as it is in the cases of the El Centro and Parkfield processes, particularly for 
the oscillator periods less than 1 s. This may be due to negligible energy in the Mexico City ground 
motion for the periods less than 1 s.   
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Fig. 11  Percentage error spectra due to fixed-base assumption in case of sξ  = 0.02, 0.05, 

0.07 and 0.10  
 

 
Fig. 12  Percentage error spectra due to fixed-base assumption in case of El Centro (EL), 

Mexico City (MX), Parkfield (PK), and white noise (WN) excitation processes  
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 It may be noteworthy that the extent to which the fixed-base assumption affects the F.R.S. ordinates 
does not depend on the oscillator mass unless the oscillator is heavy, say more than 10% of the mass of 
the supporting floor. This happens because, with the fixed-base frequencies of the two sub-systems kept 
unchanged, the level of soil interaction remains insensitive to the oscillator mass. For heavy oscillators, 
however, damping of the combined system may change with the oscillator mass, particularly when the 
oscillator frequency is close to one of the natural frequencies of the system, and, then, the oscillator mass 
(relative to the mass of the supporting floor) may become an important parameter.   

CONCLUSIONS 

 A mode acceleration formulation has been proposed for the absolute acceleration response transfer 
function of a SDOF oscillator which is attached to the “stick” model of a base-excited, classically damped 
primary system supported on compliant soil. The proposed formulation uses fixed-base primary mode 
shapes. Effects of soil-structure interaction have been taken into account by using the sub-structure 
approach. As the primary system response has been approximated by considering pseudo-static response 
in a chosen number of higher modes, those modes need not be evaluated which are well outside the 
frequency range of the excitation. The proposed transfer function has been then used together with a 
band-limited white noise ground PSDF to generate floor response spectra in case of a 15-story shear 
building. The numerical results show that in case of the proposed formulation, it is important to consider 
the dynamic response of all those modes of the flexible-base building which fall within the frequency 
range of excitation, and that soil-structure interaction should not be neglected in generating floor response 
spectra unless the soil is quite stiff relative to the superstructure. The extent of soil-structure interaction 
effects is found to depend significantly on the damping ratio, natural period and location of the oscillator, 
and on the energy distribution in the excitation process, besides the shear wave velocity of the soil 
medium.  

APPENDIX: TRANSFER FUNCTIONS, sχ  

 The transfer functions for the interaction acceleration, as in Equations (15) and (16), may be 
expressed as (Dey and Gupta, 1999)  

 ( ) ( ))(
2
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with  

 ( )( )2 2 2 2
1 2( ) ( ) ( ) ( ) ( )VV MM VM HT HT VM T VV T MML K K K L m m K I K L m Kω ω ω ω ω∆ = − + + − −  

 ( )4
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Here VVK , VMK  and MMK  are the complex-valued, frequency-dependent impedance functions (with the 

units of force per unit length). These functions are directly proportional to G  and L , where G  (= 2ρβ ) 
is the shear modulus of rigidity, ρ  is the mass density, and β  is the shear wave velocity of the soil 
medium. L  denotes a suitable length of reference of the foundation. It is taken as the radius of a circular 
foundation of equal area in case of a rectangular slab foundation. The impedance functions also depend 
on hysteretic damping ratio, ζ , Poisson’s ratio, ν , and aspect ratio of the rectangular foundation slab. 
Those are assumed to be obtained independently for the given foundation-soil system, e.g. for a surface or 
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embedded foundation resting on visco-elastic uniform or layered half-space, or on layered soil deposit 
over a rigid half-space. Further,  

 2

1
( ) 1 ( )

n

p j jp
j

G M Dω ω ω
=

= + ∑   (A.6) 

represents the transfer function for the total horizontal force acting on all masses of the fixed-base 
primary system (including inertia forces) when a force is applied along the pth primary DOF and both 
ground excitation and secondary system are absent, and  
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1
( ) ( )

n

p p j j jp
j

P h M h Dω ω ω
=

= + ∑   (A.7) 

represents the transfer function for the moment of this horizontal force about the base of the primary 
system. The functions,  
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and  

 2
2

1
( ) ( )

n

HT HT j j j
j
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represent the transfer functions respectively for (i) the total inertia force acting on all primary system 
masses of the fixed-base primary system, and (ii) moment of this force about the base of the primary 
system, when the primary system is subjected to translational acceleration at the fixed-base and secondary 
system is absent. The transfer functions,  
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1
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n
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m m M Yω ω ω
=
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and  

 2

1
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n

T T j j j
j

I I M h Yω ω ω
=
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are ( )Tm ω  and 2 ( )HTm ω , respectively, for the case when the primary system base undergoes rocking 
acceleration instead of translational acceleration. In case of mode-displacement method, it can be shown 
that 1( )HTm ω  = 2 ( )HTm ω . In Equations (A.8)–(A.11), Tm  = 

0

n
jj

M
=∑  represents the total mass of the 

primary structure-foundation system, HTm  = 
1

n
j jj

M h
=∑  represents the moment of the entire primary 

structure-foundation system about the ground level, and 2
0 1

( )n
T j j jj

I I I M h
=

= + +∑  represents the 

moment of inertia of the primary structure-foundation system about a horizontal axis at the ground level. 
Here 0M  and 0I , respectively, represent the mass and mass moment of inertia of the foundation, and jI  

represents the mass moment of inertia of the jth floor mass, jM , about a horizontal axis through its mass 
centre.  
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