" | FREE VIBRATIONS OF BEAMS AND CANTILEVERS WITH ELASTIC RESTRAINTS |

M. B. Kanchi*

SYNOPSIS

Free undamped flexural vibrations of uniform beams
and cantilevers with elastic restraints are studied using
Ritz’s. minimizing method. An approximate mode
shape is assumed in terms of sujtably seleéted parameters
and by adjusting the relative ratios of these parameters,
solutions corresponding to arbitrary elastic restraints
applied at the ends of the members are presented.

Frequency equations, which otherwise would. be in the

form of transcendental equations involving trignometric
as well as hyperbolic functions, are  derived in the form
of quadratic or cubic equations. Suitable charts are
appended to aid analysis and design.

INTRODUCTION

The governing differential equation for free un-
damped, flexural vibrations of uniform member of mass
m per unit length and uniform flexural rigidity EI, is

given by
g?f —MX =0 we (D
io which, |
M= n—ll—%! ‘ v (2)

p, being the natural frequency in angular measure; X, is
the dynamic deflection mode shape and is of the form
X =C, Sin Ax+C;Cos Ax+C; Sinh Ax+C, Cosh ax (3)
Four boundary conditions, two at each end of the
member, determine these four arbitrary constants and
the mode shape is determined .to within an arbitrary
constant, as follows:

X =A, (Sin AxQCos X + G Sinh Ax +

Cl Cl
C
< Cosh M) o (@)

Only three of the four arbitrary constants are indepen-

dent and determine the mode shape which is characteris-

tic of the given boundary conditions. The fourth
determines its magnitude and has to be determined from
the given initial conditions. To calculate the natural
frequency oaly the shape is of concern and is obtained
to within an arbitrary constant.

 For members with elastic restraints solution of the
frequency equation, resulting from the elimination of the
four arbitrary constants from the four end conditions
of the members, reduces to the solutions of transcendental
equations involving trigonometric as well as hyperbolic
functions. The solitions will have to be effected graphi-
cally, or by trial and error. Since the natural frequency
is insensitive to dynamic deflection shape and only
depends on the ‘overall’ or ‘average’ shape an approxis
mate shape always yields values which are in good
agreement with the exact values. Either of the. Ritz’s
methods—the averaging method, er the minimizing one,
can be used to formulate the problem. Analysis of
beams and cantilevers with elastic restraints at their
ends, using these procedures is the main subject matter
of the paper. The Ritz minimizing procedure whose
usage is more popularly known than that of the avera-
ging method, is used here to derive the expressions.

CANTILEVER WITH ELASTIC MOMENT RES-
TRAINT AT THE FREE END.

Consider a cantilever of height h, of uniform mass
m per unit length, and flexural rigidity EI, as shown in
Fig. 1 (a). It is restrained at the top by a moment
which is proportional to the rotation thereat. This has
been schematically represented in Fig. 1(a) by a massless
spring. Let K be the stiffness of such a restraint.
K is the moment per unit rotation, and always opposing
the rotation. This may be looked upon as the free
body of the column of a portal frame in which the mass
of the beam is not considered. Extension of the results
obtained for the present case to include the effect of the
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mass will be made. Assume that the dynamic deflection
mode shape is of the form

X-———(l —Cos -—)+b(l —Cos 2h)

This is an approx:matlon to the shape glven by Equa-
* tion (3). The first part of the assumed shape corres-
ponds to the case of infinite restraint as shown in Fig.
1 (c), while as the second part to the case of zero restraint,

) K x * a x
+ @F | e lEal =
-1
i, ,
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Fig. 1.

or free end, as shown in Fig. 1 (d). Writing Equation
(5) in the form analogous to that of Equation (4),
namely,

X = AIB- {)(1—Cos "T")+(1—Cos ’ZLD]

. {6)
It can be seen that the ratio (% )determines the shape of

the mode, and A, the size of it.  The shape parameter
(a/b) will now be determined as a function of the stiffness
of the restraint applied, so that for dlﬁ'erent stnffnesses

ranging from zero to infinity, this parameter can be
adjusted.

The maximum strain energy
given by

v-EL jh(-gi)z—()zdx-{—%Kez . )

Evaluating the derivative with respect to x, of X from
Eq. (5), at x=nh, it can be seen that,

_T7b
- 2h ose

of t’he system is

®

9= &l

Substituting X and @ from Equation (5) and Equation (8)
into Equation (7) and evaluating the iutegrals, the
strain energy expression takes the form

Elx* 1+’r
Ten® [ + _ab+

in which © is. the dimensionless ratid of stiffnesses,
denoted by

V= b? ] w 9

8 h
= B .K ... (10)

This actually happens to: be the approximation of the
ratio, K / (’Ehi) , in which (Eﬁl-) represents the flexural

stiffness of the cantilever as used in structural statics.

T

The maximum kinetic energy of the system is given
by
1 h ‘
T =+ mpzj X2 dx e (1)
2 ° -
On substituting Equation (5) into this, and evaluating.
the definite integral, finally,

’;
TP h[s ‘+8(1———— Jab-+8 —ﬁ-)bf_\
- (12)
Equating expressions given by Equations (9) and (12)

and denoting,
2 4 .
_mp?® h (13)

= _ (Y
A= (?) Bl 7t

Rayleigh’s quotient takes the form,
_ at 4 ~——ab+ ljlbz ‘
A = (14)
3a% + 8(1—-3-— ab+8 2~ —)b2

Denoting by N and D, the mumerator and denominator,

we can write

. 15

7 =X
- D
Equations v
ON _ o 0N _ g -
ST 0; %5 0 .. (15

determine the conditions to evaluate the parameters a
and b. The first of these equations becomes

p 2N oD
0a . ¢a
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)

N N D
D(aa D 0a

Since D cannot be zero and %= X :
Equatiens (15) can be written as
. a _ -—“ .
H(N—A D)=0 i N
i(N—XD) =0 e L (16)

Using for N and D, the nurerator and demomnator of
Equation (14), these give, :
1y } b=0

| {2 —6n }.ewr{g;r —8 (1— 34-,;
G e
| 3__ i)f}b:d L)

Therefore, the frequency determmant is as follows :

2—3% ——.-s(l- ~)7\ -

\-3(1 ) (1+T)-16(§~~—)7\ (13)

Expandmg ‘the determinant, frequency equatlon reads
as follows :

-2 ‘ -
» —(11.23544-5.3097)A+1.45134+1.76997=0 ... (19)

. Frequencies being obtained from this equation, Equa-
~ tions (17) then determine mode shapes. These two
. equations can be written, in terms of the ratio:

0 = ( 2—) S - @0)

From Equations (17)

2
< A __at02122 '(21)
ot 4(1_ %, ) " 3aF23024

3 (147) — 16(%—— %)i _.

—_‘}__.g ) y gy e (22)
37 ( - "51?)7\
Between these two, elimination of X gives
_ 6.6632 a* + 4.2564 a — 0.7627
TS T da 23004 (2

From Equation (19) it can be verified that for v =0
A = 0.1307, This case correspondsto the case of a

cantilever. This value of A as given by Equation (13),

v ‘ El Lo
corresponds to p=3.5681f\/ ot which is only 1.48%;

higher than the true value, namely, 3.5159 \/ }%14 .

The value 7 = 0.1307 in Equation (21) gives
o = 0.1459. This states the ratiosin which the two
shapes shown in Figs. 1 (c) and 1-(d) are mixed up.-
Similarly for the case when t = o from Equation (19)
N = 0.3333 and then from Equation (21) o = e, that
18, b == 0, This means that the shape is purely as shown
in Fig. 1 (). The value of the frequency will - be

p = 5.6977 \/ I—;ﬁ% which is of the order only '1.8%

higher than the true value p=5.5932 ,\/ I%T correspo-

nding to 3=0.3211. The exact frequency equation, as
obtained by applying the boundary conditions,

(L =0 )
X=0
aX)
X lx-o
2 o
_ X _g9Xg - (29
dX2 =h dx lx=h :
X
Elax—a o =0 ]

is as follows :

CosaL Cosh AL +1 72 _r_) .
Cos AL Sinh AL—+Sin AL Cosh AL~ 8 \ AL
. (25)

Equation (19) has taken now the place of Equation (25).
The true mode shape governing the frequency . equation
(25) is quite involved. The mode shape corresponding
to equation (25) is as follows : ’
X=A,{(Sin ax—Sinh Ax)+-a'(Cos Ax—Cosh E%})

wherein o is given by

—(Sin AL+ Sinh )L)-l— 8 (CosAL—Cosh AL)

a’ =

(Cos AL+4-Cosh AL) + 8_'J)I (Sin AL4-Sinh AL)
| @)
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Equation (6) has here taken the place of Equation (26)

and Equation (21) the place of Equation (27). It is seen
that Equations (19), (6) and (21) are easier to be handled
than their corresponding true expressions—Equations
(25), (26) and (27). It is indeed fortunate that frequency
is’insensitive to these approximations. . ‘

Equations (21) and (23) are used to prepare the
frcqengy curve as shown in Fig. 2. To obtain » in terms

of t, Eq. (19) need be solved. However, Equations
(21) and (23) togéther can yield a set of values to plot
 Versus 7. Equations (21) and (23) give respectively the
plots of AVsaand v Vg a, From these plots the curve
of N Vs 7 is obtained as shown in Fig. 2. From this
figure it is seen the frequency is sensitive to restraints
onlyin the beginning upto v=2 while as it is insensitive
beyond 7 = 10,

CANTILEVER WITH ELASTIC RESTRAINT AND
A MASS CONCENTRATED AT FREE END

" The free body of one of the columns of a symmetrical
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protal frame, shown in Fig. 3 (a) is as shown in Fig. 3 (b).
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Fig. 3.
The column AB for restraints is equivivalent to a canti-
Jever with moment restraint at top. When sidesway
mode of vibrations is considered, one. has to consider
the kintetic energy as follows :

(a) kinetic energy of the mass of this cantilever
assumed uniformly distributed along its length,
vibrating horizontally-;

kinetic energy, of the mass of the beam BC, vib-
rating horizontally, displacement of each of the
elemental mass of the beam being equal to the
‘horizontal displace-ment at B of the cantilever,
(extensions of the beant being neglected), and

()

(c) “kinetic energy of the mass of the beam BC,
asssumed as a distributed mass, vibrating

vertically. -

Of these three contributions the first two are usually
considered and to include the last, the mode shape
of the beam BC has to be assumed, consistant with .thc
continuity condition at the joint B. If only the first two
are taken into account, the analysis of single bay sym-
metrical portal frame reduces to that of a cantilever with
moment restraint of stiffness,

K; =6EKk, (28)
. and a mass. M, concentrated at free end equal to ‘
M =m = (@

where m; is the mass per unit length of beam. This
has been schematically represented in Fig. ¥ (c).

To proceed to analyse such a cantilever it will be
assumed that the mode shape is still given by Eq. (5).
Strain energy expression, given by Equation (9) remains
the same, while as to the expression of Kinetic energy,



Free Vibrations of Beams and Cantilevers with Elastic Restraints 41

givetisby Equation (12) the following expression, repre-.
senting the contribution from the mass M; v1brat1ng

with sinusoidal displacement haviag amplitude X .
x=h

namely, (a+b), has to be added : .
T, = % M, (a+b)“’ i e (30)

Addmg this to the right hand side of Eq. (12) and equa-
ting it to the right hand side of Equation (9) one obtains

a? + -ﬂ—ab + L’fﬂ_bz
A=7 Y Y1l p2
G+ % er{sa— s+ 1} b+{8(———-)+ o
. (31

in whxch 7 is the ratxo of the mass of the beam to that
of column, :

M, 1 m L I 7

M= mh T2 m h
and t,, the dimensionless ratio of stiffnesses :
48 k v
Ty = '72-' 'lzl—“ ’. oo (33)

Equation (31) is the extension of Eq. (14). Proceeding
the same way as was adopted in deriving Equations (21)

and (22) we obtain instead of them the following

equations.
2
a + 37

N | (3 +h "a+4(l—— 2 )+-L1
3
" j (147)— %1:%:— ~)+ }7\ &

From these two equations A and e can be obtained for
given values of 7; and 7, either by trial and error, or by
solving the‘resulting;quadratic by -elimination of ¢ bet-
‘ween these two equations. The quadratic would be the
same form as equation (19):

€L

BEAMS WITH ELASTIC RESTRAINTS.

Analysis of the free flexural vibrations will now be
carried to the case of beams with uniformly distributed
mass and flexural rigidity. The ends of the beam are
held against relative displacement, but are elastically res-

trained against rotations, as shown schematically in

Fig. 4 (a). This may be looked upon as the freebody of
the vertically vibrating beam AB of a portal frame
shown in Fig. 5, in which thé columns have different
stifnesses, In analysing the beam AB of Fig. 4 (a) the

(&}
P~ *
e . :

[C1]

I\M - e *
Xa
' e)
Flg. 4,

springs will be assumed massless. It differs from being
the complete dynamic analogue of the beam AB of the
portal frame of Fig. 5, in as much as the Kinetic energy

A .
-]
}— \____7 .
4 k )
k, )
- ‘ ot 5
p— L » v
Fig. 5.

of the.column masses vibrating horizontally™is excluded.
The results obtained for the beam AB hold for the beam
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AB of the portal frame in which the masses of the
- columns are either too small or are prevented from
vibrating laterally.

For the beam AB of Fig. 4 (a) assume the dynamic
deflection mode shape as

(1 —Cos 2’”‘)+ esin 77X (6)

- Each of the shapes are shown in Figs. 4 (c), 4 (d) and
4 (). The shape function will be

X = A,{Sm = (1 —Cos %ﬂ-x )—{-a, Sm L }
w (37)

oy = (—:-) oy = (‘;—) .. (38

and A, is the size parameter. As in the previous case,
here too o; and a, will be determined in terms of the
stifnesses C; and C,.

X—aSm~—

where

Maximum strain-cncrgy will be given by
EI
j (X ) G+ GO GO (9)

where the second and third terms on the right hand side
represent the energy stored in restraints at the supports.
Evaluating the drivative with respect to xof X as stated
by Equation (36) at x = 0, and X == L, one obtains

oL = __L._. (a+2c);92=—i—- (—a+2c) eee (40)

Substituting Equation (36) and Equation (40) in Equa-
tion (39) and evaluating the definite integrals, one
arrives at

EI7r
T 4L3

2—l~4b’—{—1602—{-- 5 ab+(a2+4c2) (11—1—1:2)—!—

4ac(rl—r2)] . (41

in which 7, and ~, are the relative stiffness ratios
G

('nz El

n2 EI . . L
37 8 Fourier approximation of the exact

T =

(42)

(772 EI

’ The factor

value il—l::—t, representing the flexural stiffness of beam

without vibrations. Substituting for x, its value given by
Equations (36) into the right-hand side of Equation (11)

"and evaluating the integrals, expression for maximum

Kinetic Energy becomes
=—mf~21‘{a’ + b e+ %g ab} e (43)
Equating Equation (41) to Equation (43) and denoting
=2 ) =P, | CT)
one abtains '

a?+-4b2+416¢2-+ 1 6ab+(a2+ 402)(71+Tz)+4ac(71‘7§)

" a4 3b*+ cz+~~ ab

45)
Proceeding in the same way as was adopted in deriving
Equations (16),

2 NP
L (N-AD)=0

!

l . .
a —~
FN—2D) =0 ( ‘ .« (46)
|

@ =0y -
53(N—7\D)—-

Where N and D respectively denote the numerator and
denominator of Equation (45). These equations give
the governing equations of mode shapes. These are as
follows : ‘

-~ 8 -
{1+(71+Tg)—7\} a+37r~(1~—7\)b+2( —-"'2)(::—.01I
S A=W a+ @—inb o} @
Ip \b—/ha —inb |
|
2(t—7y) a + {16-+4(ri+7)— N} c=0J

The condition that the determinant of these equa-
tions should vanish yields the frequency equation.
Alternatively by a systematic elimination of a, b and ¢
the same equation can be derived. From second and
third equations of (47), ratios (b/a) can be obtained.
Using the notation stated by (38)

o = -3":"" . vee (4‘8)
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o o 2T ¢ e (49)
=4 (ty479) —16 -

Dividing the first of Eqgs. (47) by throughout and using
therein Eqs. (48) and (49) and simplifying the frequency
equation will be obtained as
© 0.029533—72[0.868 (t,+715) +3.7810]

7 [29.2360 (s1+-7,) +12 7 75-+56.2240]

—64 7, 73— T77.1180 (1,+75)—52.4720 = 0 (50)

 being determined by this equation Equatlons (48) and

Equat;ons (49) will then give the mode shape para-
_ meters a and ag.

It is seen that Equation (50) is symmetrical with
respect to 7, and 7,. For the case of fixed beam 7,=7,
= o, Equation (50) gives

A= —3— Usmg Eq.(44), p=22.7985 ‘\/ -------- — Wthh

is about 1. 5/0 higher than the true value of
22.36 Ei
mL

For this case ¢y = 0 and a=0

that is, a=0, as givenr by Egs: (48) and (49)

Preparatxon of frequency charts in this case is more
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in)’ One parameter a was mvolved In thrs case Equa-
tion (50) has been solved for 7, in terms of 7y and 2, and
for different constant values of AT has been solved in
terms of ,, For example forx =2, - ST
Equation (SU) reduces to o _ ,
T,+rg+1 8080 Ty Ty—2. 0380 = e (51
This is symmetrxcal with respect to the diagonal line
Te=7 ( Flg 6) Any set of values for 7, and k) that

satisfies this equation gives frequency N =2 If Ty =Ty,
that is, if the end restraints are identical, - then
%,=73==0,644. Also if one of the ends is hinged, then

the other should have the restraint of stiffness ratio”

equal to 2.038, as obtained by putting either of 7, or 7y,
equal to zero. Equations similar to Equation (51) ‘have
Qeen determined for different assigned values for

A rangingfrom A = lﬂtoi = 1;, respectively the lower

and the upper bounds for the frequency.

Curves given in Fig. (6) can be used to try the
various stiffness ratios to produce. a desired frequency,
or conversely, given the stiffness ratios of the restraints
to calculate the frequency, Since the curves are on

logarithmic scale interpolation may cause errors. E‘q'uaf
tions (48), (49) and (50) can .always be used to rectify the-

values picked up. from the curves For example suppose

Ty =Ty=1, From the curves A = 24, To. correct it -

for inaccuracies mvolvcd in, mterpolatron Newton s for-
mula can be applled to Eq. (50). It was. found that the

ﬁrst correction was—O 02, ngmg A =2, 38 A second

eorrection gave 7\ =2, 3802

Mode shape can be determined from Equatlons (48)
and Equatlons (49) when once the value of A is. known.
Suppose A=2.5. From the frequency chart; v, =2, 7,e=
0.6 is one of the. admxssrble sets. Eqbauons (48) and
(49)

4 ABulletin of the Indian Sogiety. of Barthquake Techuology -,

for these values of A, %, and- Ty EIVE ay = 0, 5992 and
= 20,1171, Therefore Eq (37) ecomes

o sm ?_’I%E} . (53

This shape function’ carresponds to ‘points of contr-
flexures at x = 0.22 L and'x = 0.86 L

:CONCLUDING REMARKS
By assuming an approxrmate shape for the dynamw ‘

deflection mode in terms of some suitably selected para-
meters solution for natural frequencies of beams and
cantilevers with elastic restraints can be effected with a

- .greater-ease. The errors admitted in the. frequencies so
‘obtained are of permissible order. Solution of frequency

. equations which are trahseehdental in nature involving
. trigonometric and hyperbolic functions are replaced by
' algebraic equatrons It is easier to vary the parameters

and prepare the frequency charts
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