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ON SINGLE STEP ALGORITHMS IN THE SOLUTION OF DYNAMIC
LINEAR AND NONLINEAR PROBLEMS

Pankaj’, Khalid Moin' and Gajendra Barthwalt

Abatract

Dynamic snalysis of structures for the evaluation of the timewise response is of-
ten conducted using direct integration of equations of motion. A number of methods
have been proposed for direct integration of thess equations of motion. In this study
two general families of single step algorithms for direct integration are considered
vis the Generalized Newmark (GN) algorithm emanating from the generalization
of the Newmark method and Single Step (S8) algorithm due to Zienkiewics, Wood
apd their coworkers. From these goneralised forms s number of new and existing
algorithms can be simulated. Stepwise procedure for GN and 885 family of algo-
rithms are developed in predictor — corrector form. From thess procedures New-
mark’s unconditionally stable algorithm, Houbolt (originally multistep) algorithm
and Wilson # method are simulated. These simulated procedures are applied to
linear as well a2 in nonlinear problems. Each family is seen to have advantages as
well as disadvantages over the other. It is seen that elastoplasticity does not alter
the predominant frequency response of the system. It, however, introduces a zero
frequency and some low frequency components in the responee. It is also seen that

© strain softening plasticity can be successfully used with dynamic problems.

INTRODUCTION

The equilibrium equations of a multidegree freedom system in motion are of the form
Mit+Cx+Kx=f (1)

where M, C and K are the mass, damping and stiffness matrices, f is the time varying
external load vector and x, X and X are the displacement, velocity and acceleration
vectors of the nodes in the discretised element assemblage. In direct integration the
equations (1) are integrated using a numerical step by step procedure. The term direct
means that prior to numerical integration, no transformation of the equations into a
different form is carried out. In these methods the aim is to satisfy the equations (1)
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at discrete time steps at interval At. The methods in which the recurrence algorithms
are valid within a single time step and relate the values x,,,,, x,.“, Xpy at stepn 4+ 1
to X,, X, X, at step n are called Single Step Methods. In- Multistep Methods Xp4
are related t0 X, Xn-1, Xa-3 etc. without introducing explicitly the derivatives and
assuming that each set is separated by an equal interval At. Such algorithms are, in
general, less convenijent to use than the single step procedures, as they do not permit an
easy change of the time step magnitude. Also these methods require a greater degree
of book-keeping as displacements of previous steps are required to be stored. Various
such algorithms have been derived using the weighted residual process (2ienkiewicz and
Wood, 1986) and it has been shown that these procedures have |dent1ca.l stability and
accuracy properties as single step methods.

Zienkiewicz et al. (1984) used the term single step for the set of algorithms
devised by them. In this study a broader meaning to this term is implied. All algorithms
that relate values at step n + 1 to values at step n have been termed as Single Step
Algorithms and two generalized algorithms viz. (a) those due to Zienkiewicz et al.
(1984) termed as SSpj and (b) those emanating from the generalization of Newmark
method (Zienkiewics and Katona, 1085) GNpj are studied. In GNp; and §Spjs, p stands
for the order of the polynomial of approximation of the variable x and j stands for the
order of the differential equations. Since this study is confined to vibrational problems,
the value for 5 equals 2.

GENERALIZED NEWMARK (GN) PROCEDURE

This procedure applies Taylor series approach to derive a general form of single step al-
gorithma that can be considered to be a generalization of Newmark method (Zienkiewicz
and Wood, 1986). It results in a scheme which is not self starting. In the derivation
one conuiders the satisfaction of the governing equations (1) only at the end points of
the interval At and writes (Zienkiewicz and Katona, 1985)

Mz, 41 + Chpsy + KXpyy = 1) : (2)

with appropriate approximations for the values of X,.1, Xns1 8nd K41, If one considers
the Taylor series expansion the derivatives can be written as

Xns1 = X+ Alxp+ - At* ﬁp (ﬁn-ﬂ n)

AP
n+l + .ap *n-i-l
Arr-!
Te-nre

. A1
= Xpp + B (p___'min-ﬂ

*’H’l - *n + Atin +

i ﬂp- ( 1)|(£n+l n)

p-1

Xn+1 Pn + Atk, + BiAt(Knsy — %n)




On Single Step Algorithms ... 119

= ,I:I:;x'+ A At;rﬂ-l (3)

where }ﬂ ) &x,
dt»

In equation (3) for a polynomial of degree p, a Taylor series remainder term has effec-

tively been allowed in each of the expansions for the functions and its derivatives with

parameter f;, 5 = 1,2, ., p which can be chosen to give good approaximation properties

to the algorithm.

Insertion of the firat three equations of (3) into equation (2) gives a single equation

from which *,..H can be found. When this is determined x,., to'i.l..,., can be evaluated
using equations (3). The expression is

_ -3_Bp-s p~1_Bp-1 N AN
*ni-l = (MA" ’(?52_)! + CAt l(p;_l—)!'i'KAl ;%)

X (tu‘i-l - M§n+l - C§n+l - Kin+l) (4)

It can be easily shown that the commonly used Newmark method can be derived from
the above generalized procedure. The above algorithm applies to both implicit and ex-
plicit schemes. In terms of Generalized Newmark method an explicit scheme is simply
defined by £, = 0 for any order of p (Zienkiewicz and Katona, 1985). Conversly, an im-
plicit scheme is defined by By # 0, irrespective of the remaining integration parameters,

Algorithm for GN22 and GN33

A detailed implementation algorithm (Barthwal, 1992) for GN22 and GN33 is now
discussed. The algorithm is in the predictor-corrector form which js particularly advan-

tageous in nonlinear analysis. The changes required for nonlinear analysis are discussed
in subsequent section.

{1) Begin predictor phase
Set iteration counter s =0
if p=2then
X1 = Xn + Al + (1 — B3) (A /2)%,
Xt = Xn + (1 - B1) At
gn+l = xfmﬂ.
ir_n-l = ’.‘:;I-l
Ko = (04 — Xni1)(2/(8:4%) =0
else
Xnt1 = Xn + Aty + (A8/2)%n + (1 ~ Bs)(AL3/6)1,
Xhi1 = Xo + AtX, + (1 — B3)(A3/2)%,
5'fu+1 = x';.+1
Xn4l = *-:uﬂ
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5.:‘!:4-1 = i:‘n-l
Xp41 = (Xhs1 —i,.ﬂ)(G/(,ﬂ;At‘))
endif

(2) Form effective stiffness matrix K*
if p=2then
K*= M(2/(ﬂ3 tz)) + C(2ﬂ; (Atﬂg)) +K
else
= M(68,/(A1?6:)] + C(36:/(AtBs)) + K
endif

(3) Evaluate res:dual forces
i = fas1 — M&L,, — X0y — KXy

(4) Solve for incremental displacements Axt
K*Ax' = ﬁ.‘

(5) Begin the corrector phase
x::i-il - xn-ﬂ + Ax
if (p= 2) then
x::rlt = (":-tlx - %.11)(2/{B:01)
XL = Kasr + BIALGY
else
:tf‘l = (x¥) — Kas1)(8/ (ﬁ,At’))
o = fne1 + ﬁg(At'/2)x:‘t‘l
%L = (Rner + ﬂlAtx:,*,',,',
endi f

(6) if (Ax' and/or ¥ > specified tolerences) then
t=1+1
go to (3)
else
go to (7)
endif

(1) sf (p =2) then
Xnt1 = xn+l|.
xM-l = xn+l

else
Xnsyl = xn+ll
xn+l = xn+l
Rns1 = xn+l

endt f

(8) Set n.=n + 1 and begin next step

Bulletin of the Indian Society of Earthquake Technology. Sept. 1994
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In the/a.bove algorithm the primary variable solved for is displacement rather than
acceleration as would be the case if one were to use equation (4). This is advantageous
for elastoplastic problems where the tangent stiffness matrix is displacement (or strain)
dependent. However, the disadvantage is that the explicit scheme cannot be employed
as this would require 83 = 0 or 8y = 0 for GN22 and GN32 respectively and would
generate indeterminate values in steps 2 and 5 of the algorithm.

SS ALGORITHM

Zienkiewicz et al. (1984) gave a unified set of single step algorithma SSpy using poly-
nomials of degree p. They considered a single time interval At (Fig. 1) in which the

t?
"
— Xn
Xa+1
X *n+l
At
’:....—— t n+1

Figure 1: A second-order time step appproximation (Zienkiewicz et al. 1984).

variable x was approximated as a polynomial of degree p in time ¢ taken as zero at n,
ie. (0<t<AL)as

. . t? P
x..+x,.t+x,,§-+...+ alrl—

L]
I

p!

Za'cn aZ 5)

=0 p!

The unknown values Xn41, Xa41 ¢tc. are found using the known values at the start of
the interval X,, X, etc., and the as yet unknown vector af® as

A AtF
P

) t"‘ Al o, Atr-?
Xny1 = Ziﬂ (P)p_ 1 = Xn41 + 05.")?— (6)
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To determine the unknown parameter a!,’), a weighted satisfaction of the equation of
motion was assumed (Zienkiewicz et al., 1984) i.e.

At
, [ WMz + cx+ Kx-nar=o0 ™
and a definition of following form employed
JA Wi dt
W=ant' g=1,---,p; 00=1; OSQQSI (8)

Using the above equations the values of a{?) can be found as

!

1
(F— M,y — Cniy — Kfnyy) (9)

Ap-? ar-t
o = (

AtP
PyyY 0,..,M + p__ﬁa'_lc + FJ,,K)

where

iy An
Rart = A=,

=0 q!

i Pl Apt

Xnyl = 'E:linmav—l

- p-l AtT-2

Xy = Z*um*’q—z (10)
=2 )

and assuming that the load vector is available at steps n, n + 1 eic. one may assume
linear variation of f during the time interval and use

f = Olf,,ﬂ + (1 ~ ﬂl)f,. (11)
This should, however, be used with care as such assumptions can lead to the change in

the frequency content of the original signal (Basu, Pankaj and Kumar, 1992; Pankaj,
Kumar and Basu, 1994).

Algorithm for SS22 and SS33

A detaijled implementation algorithm which is a slightly modified form of that suggested
by Barthwal (1992) for SS22 and $S32 algorithms is now considered

(1) Begin predictor phase

tf p=2then
Kny1 = Xp + Atx,
§n+1 = Xy
K1 = Xp + Atkn8,
Rns1 = Xn

else
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().

(3)

(4)

(5)
(6)

(7)

(8)

Rni1 = Xp + Atx, + (At2/2)%,
Xni1 = Xn + Atk
§n-i-l = R,
$n+1 = X, + Atx,0 + in(At'/2)0=
?ﬂ'l-l = *u + inAtal
a1 = Xn

endi f

Form effective stiffness matrix K*

3fp=2then

K* = Mé, + At6,C + (At?/2)6,K
elae '

K* = MAtS, + (At2/2)8,C + (At?/6)6;, K
ends f

Define
f = Olf,....l + (1 - 01)fu

Compute the effective load vector
if p=2then
f* = ? - Ci"“.] - Ki,ﬂ.]
else
f* = f - Min.n - Cﬁ.u.u - Ki,ﬂ.l
endif

Set iteration counter s = 1 and begin iterating

Evaluate residual forces
sfi=1then
Xpy1 = fnﬂ
*‘n-l-l = Xn41
if p=3then
*fwl = Xn41
endif
endi f
ifp=21then
¢i = K*ﬁn.',] + f*(At’/z)/K*xf,+1
elae
*.- = K*i"+] + f'(Atalﬁ) - K‘x:.,,,
endif

Solve for incremental displacements Ax*
K*Ax' =

Begin the corrector phase

123
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X = Xpyq + AX

if (p = 2) then

o = Xner + (X5, — Rne1)(2/ AY)
elase

= ’i‘nﬂ. + (et — Rav1)(3/A0)

Xl = Xner + (x';.tll ~ Rns1)(6/AL%)
endif '

(9) if (Ax' and/or ¥ > specified tolerences) then
apply iteration counter increment and go to (6)
else '

go to (10)
endif

(10) if (p = 2) then
$+1
Xnp1 = xn;-'l-ll
Xns1 = x:;:-l
else
—_ aitl
Xn41 = x?+ll
* —_ . +
Xnt+1 = x?+1l
" —_ +
Xn+l = Xnyy
endif

(11) Set n = n + 1 and begin next step

MODIFICATIONS FOR NONLINEAR ANALYSIS

In this paper the nonlinear problems discussed are confined to those arising out of
elastoplastic material behaviour, Thus nonlinearity is confined to a nonlinear stiffness
matrix which in turn is dependent on displacements. So mere replacement of K by
the elastoplastic stiffness matrix K modifies the above algorithms for such an.analysis
(Owen and Hinton, 1980). When a modified Newton Raphson (mN-R) iterative proce-
dure is used one can continue to use K as far as the formation of the effective stiffness
matrix K* is concerned, while taking into account the effect of elastoplastic stiffness in
the evaluation of residual force vector. If the stiffness matrix is reformulated in every
iteration (N-R iteration) convergence may be achieved faster i.c. in fewer iterations.
However additional computational effort is required in the formation of stiffness matrix
and its triangularisation in every iteration. Further N-R procedure suffers from a draw-

back that K may become singular for elasto-perfectly-plastic or elasto-strain softening
materials.
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Convergence criteria

The convergence criteria were based on the norm of incremental displacements and the
norm of residual forces. Thus the solution is said to have converged if

A
$HLIYT i+l _ ford YTl
e )(Zl":)rxg") %) < tolerl (12)
md i+1 (Lo § i
((¢n )Td’nll_'(l‘bn)r'l’u) $tolcr2 (13)
((eh)rvl)

tolerl and toler2 are the specified tolerances and were kept at 0.001. Superscripts denote
iteration number.

EXAMPLE PROBLEMS

The results of some particular examples of §822, §832, GN22 and GN32 are presented,

~ Values of the parameters b, in SSpj and g, in GNpj are so chosen that the algorithms

are single step equivalents of well known methods. Such equivalence has been established
for SSpj algorithmsa by Zienkiewicz et al, (1984) and Zienkiewicz and Katona (1985).
Here we consider the equivalent Houbolt and Wilson # methods. The Houbolt method
is originally a multistep method. For the SS and GN methods outlined in the previous

. sections it has been shown that $§22 and GN22 are equivalent when 8, = 3; = 8, =

#; = 0.5 {Zienkiewicz et al., 1984). GN32 and S832 become equivalent :to the Houbolt
method when 8, = 8, = 2, 8, = 0, = 11 /3, Bs = 8y = 6 and to the Wilson ¢ method
when gy, =0, =48, 8, =0; = 6, 8y = 8y = 63 (Zienkiewicz et al., 1984; Zienkiewicz
and Katona, 1985). The Wilson # method is unconditionally stable when 8, > 1.366
(Bathe, 1982). .

The single step equivalents of GN32 and SS32 have not been sufficiently tested.
While some tests with SS32 have been made (Penery and Wood, 1985) the authors were
unable to find similar research with regard to GN32. The reason, perhaps, is that GN32
is difficult to use when the initial conditions are other than zero. This is due to the fact
that the method requires initial value of the third derivatjve of displacement for which
no expression is available. ‘ '

Some linear and nonlinear problems were solved to study the performance of these
algorithms. The problems and the results are discussed in the following subsections.

Problem 1 : Free vibration due to initial displacement

In this problem the mass of the system shown in Fig. 2 is displaced by unity and the
system permitted to vibrate freely due to this initial condition. In addition the system
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K = 4100N/mm
m = 100Ky

Figure 2: Damped SDF system.

is assumed to be undamped. This problem was also considered by Bathe (1982) to
study the performance of various methods. The time step At chosen is T/20. A Single

Degree Freedom (SDF) system as shown in Fig. 2 forms the basis for this and some
other problems that follow.

It can be seen from Figs. 3 to 5 for this free vibration problem, for the choice of

Q90 \
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—a0-— GN22

Closed form
E
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& ~080
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00 o.40 0.80 120 1.60 280 249

Figure 3: Free vibration response under unit initial dispalcement. Comparision of
solutions by $822, GN22 with closed form (Problem 1).

At made, that the results of $$22 and GN22; 8532 and GN32 (Houbolt case); and SS32
and GN32 (Wilson # case) are identical. The Period Elongation (PE) and Amplitude
Decay (AD) is the maximum for the Houbolt Cases of §S32 and GN32 (Fig. 4} while
it is the least for S522 and GN22 algorithms. In fact S522 and GN22 exhibit only PE

and no AD. For this free vibration problem, no difference is seen between similar SS
and GN algorithms.
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Figure 4: Free vibration response under unit initial dispalcement. Comparision of
solutions by §832, GN32 (Houbolt case) with closed form (Problem 1).
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Figure 5: Free vibration response under unit initial dispalcement. Comparision of
solutions by §832, GN32 (Wilson # case) with closed form (Problem 1),
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Problem 2 : Sinusoldal base excitation

The base of the system shown in Fig. 2 is excited by a sinusoidal displacement function
Y = Yysinwt with Yo = 1.2 mm and w = 4 rad/sec. The system is assumed to be
undamped sand At is chosen to be the same as before.

Figure 8 once again indicates identical results from 8522 and GN22 algorithma.

—h— 5522
1.50 1 ——0—CN22
1 Cloged form

s

o

[

o
1

Displocement (mm)

2
g

A 2. kX
Time (sec)

Figure 6;: Comparsion of solutions by §§22, GN22 and closed form under sinuscidal
base excitation (Problem 2).

The Houbolt case of $532 and GN32 deviates considerably from the closed form solution
(Fig. 7). The maximum difference between the closed form and Houbolt equivalent
of SS32/GN32 (Fig. 7) was seen to be almost three times the maximum difference
between closed form and S522/GN22 (Fig. 6). In the Wilson # equivalent of S532
and GN32 (Fig. 8) the numerical solution deviates from the closed form solution and
the maximum difference is greater than the maximum difference between closed form
and 8S22/GN22 cases. The 5522 and GN22 algorithms gave identical response. The
tesponse obtained from the Houbolt equivalent of SS32 and GN32 was close. Similarly
the response obtained from the Wilson 8 equivalent of 5532 and GN32 was close. One
would have expected that if both the families were simulatiag the Houbolt and Wilson 8
equivalents the response would be identical. The reason fur this not being so, apparently,
lies in the calculation of the equivalent load vector f used in the SS algorithm, which
needs to be approximated using a kind of mean value between the actual discrete load
points supplied. This is not so for the GN algorithm which uses values only at end
points.

Problem 3 : Sudden load reversal

The mass of the system of Fig. 2 is subjected to a force as shown in Fig. 9 in which
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Figure 7: Comparsion of solutions by 5532, GN32 (Houbolt case) and closed form under
sinusoidal base excitation (Problem 2).
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Figure 8: Comparsion of solutions by $S32, GN32 (Wilson # case) and closed form
under sinusoidal base excitation (Problem 2).
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Figure 9: Suddenly reversing force (Problem 3).

Jo=2000 N, t; = 4.90 see. Damping is assumed to be 20% of critical. This problem is
of interest as it amply illustrates the need for time step changes during the analysis.

In this study the time step was not changed during a single analysis, however,
two sets of analyses with different time steps were done. These analyses adequately
illustrate that time step may be required to be changed depending on the loading and
the response history. The time steps chosen were T/10 and T'/50 where T is the natural
period of the eystem. Thus two sets of curves were drawn for this problem. Each set is
a combination of curves of solutions obtained from $S22, GN22, 8832, GN32 (Houbolt
case), 5532, GN32 (Wilson # case) and closed form (Figs. 10 and 11). From these
figures it can be seen that the conclusions drawn earlier regarding the performance of
various methods remain unchanged. Clearly the results improve when the time step is
reduced. However, the larger time step also yields an accurate response in the steady
state region (which in this problem is between 4.0 and 4.9 sec and then again beyond
9.3 sec). Clearly, therefore, as the frequency of oscillations reduces, the time step size
can be increased and when it increases the time step needs to be reduced. This feature
is easy to incorporate in single step procedures as compared to multistep algorithms,
provided suitable indicators to signal such a change can be devised. Some indicators
based on error estimates have been devised by some investigators (Zienkiewicz et al.,
1984).

Problem 4 : Step function load on nonlinear systems

The structure considered for this problem is once agair rhe single degree freedom system
of Fig. 2. A step finction load of 2000 N was applied on the mass. The system was
assumed to be undamped. Different nonlinear characteristics of the spring used are
shown in Fig. 12. Figure 12(a) shows elastic perfectly plastic spring, while Figs. 12(b)
and (c) show strain hardening and softening springs respectively.

The nonlinear solution algorithm employed made use of the initial stiffness jt-
erative procedure wherein the effective stiffness was kept unchanged in the solution
of iterative/incremental displacements. The affect of the nonlinearity is incorporated
through the calculation of the residual force vector. Clearly if the regular N-R iterative
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Figure 12: (s) Elastic - perfectly plastic (b) Elastic - strain hardening plastic {c) Elastic
- strain softening plastic.

process were employed the stiffness matrix would not be positive definite for perfectly
plastic and softening cases. A total residual strategy for dynamic analysis was devised,
similar to the one used for static analysis by Bicanic and Pankaj (1990).

The first series of analyses was conducted with an elastic perfectjy plastic spring
with an yield force P, = 3280 N. For such a system an exact (closed form) displacement
response was found and plotted along with GN22 and GN32 (Wilson # and Houbolt
cases). For each case a At = 0.05 sec was employed. The response is shown in Fig. 13.
Once again it can be seen that GN22 is the closest to the exact solution, while Houbolt
equivalent of the of GN32 is the farthest. Thus a simple nonlinear prgblem of this kind
illustrates the efficacy and accuracy of the GN22 algorithm.

The authors encountered considerable difficulty in using the SS algorithm for
nonlinear problems. This algorithm uses “mean predictor values™ (X etc.) which are
used in the evaluation of the effective load vector (Step 8). It appears that for nonlinear
problems these mean predictor values would need to be revised with every iteration. In
fact while using the S8 algorithm with nonlinear problems of the kind being discussed
we are solving the differential equation

M +Cx+P(x) =1 (14)

whete X is a sort of an average of displacement between steps n and n + 1. P(x) is the
restoring force at a value of K (say R) at this x. Thus

¢

P =P(x,) + RAax (15)
In other words appropriate interpolation for P(x) needs to be made. Moreover, the
residual forces at the end of the step i.e. P(x,,,} also need to be evaluated for use in
the next time step. This sort of multiple evaluation of the residual forces complicates
the 88 procedure for nonlinear analysis. Therefore, the solution with this family of
algorithms was abandoned.
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Using the GN22 algorithm, which was seen to perform the best for the perfectly
plastic case, a second series of analyses was carried out. The displacement response
under step function loading was evaluated assuming the spring to be (a) elastic, (b} per-
fectly plastic (Fig. 12(a)), {c} strain hardening (Fig. 12(b})) with slope of the hardening
branch Ep = 410 N/mm, and (d} strain softening (Fig. 12(c})) with Er = —410 N/mm.
For the nonlinear cases initial yield force Py = 3280 N was assumed.

The displacement response is shown in Fig. 14. It can be seen that the irreversible

uW"Tf"l"ill"!lU'VQIlTQlil"lI"l"!!ll"'!‘i"l‘l"!l‘t'"fl"‘l'!!'l

displacement {mm)

£

~Xact
GN22

- GN32 {Wilson 4) 1
[ GN32 (Houbolt)
FEWE YT 1. U FEEWE PR TTTT TS FERE e worn
o "] 7] T Ty T 5
time (sec)

Figure 13: Response of SDF system with elastic - perfectly pluttc spring to step func-
tion loading (Problem 4).

plastic displacement increases os the apring characteristics are changed from elastic to
strain hardening to perfectly plastic to strain softening. It would appear that the period
of oscillation would increase in the same sequence (Zienkiewicz and Wood, 1986). A
Fourier analysis of the freguency content, however, reveals that there is no change in
the predominant frequency of vibration‘as the spring characteristics change (Fig. 15).
In each case there is a zero frequency component (ZFC) which is due to the mass
not vibrating about the zero displacement position. This component is the highest
for the strain softening case and zero for the elastic case. The analysis shows that
strain softening which has been successfully used for static analysis can also be used for
dynamic analysis.
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Figure 15: Fourier magnitude of displacement response of a SDF system with different
‘ 8pring characteristics under step function load (Problem 4).
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Problem 5 : Seismic response of nonlinear SDF systems

The base of the single degree freedom (SDF) system of Fig. 2 was subjected to an actual

earthquake acceleration history. The corrected accelerogram of the Uttarkashi earth- -

quake of October 20, 1991 obtained at 30.738N and 78.792E (Earthquake Engineering
Studies, 1993) was used for the purpose. A constant viscous damping of 5% of critical
was considered and the spring was assumed to be (a) elastic, {b) perfectly plastic, and
(c) strain softening. For the strain softening situation Er = —410 N/mm was assumed.
The response was computed using the GN22 algorithm with At = 0.02sec. In the
first instance the yield force value Py = 2.05 x 10° N was assumed. The displacement
response is shown in Fig. 16. It can be seen that for nonlinear cases the mass does
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Figure 16: Displacement response of SDF system with different apring characteristics
(with Py = 2.05 x 10° N for nonlinear cases) under Uttarkashi earthquake excitation
(Problem 5).

not vibrate about the zero displacement position. The Fourier analysis (Fig. 17) of the
response indicates that, in general, the predominant frequency content does not change
with the change in spring characteristics although some low frequency components ap-
pear to have been added to the response. Due to the mass finding new mean positions
to vibrate about a zero frequency component is added to the response (Fig. 17). These
changes of the mean position take place with the building up of the plastic displacement,
which happens in a short time (Fig. 18} and remains constant thereafter. The maxi-
mum plastic displacement for this example was found to be 22.43mm and 25.03 mm
for perfectly plastic and softening cases respectively.

e =
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Figure 17: Fourier magnitude of displacement response of SDF aystem with different
apring characterstics (with P, = 2.05 x 10° N for nonlinear cases ) under Uttarkashi
earthquake excitation (Problem 5).
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Figure 18: Increase of plastic displacement with time (P, = 2.05 x 10° N)
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CONCLUSIONS

Stepwise procedures for SS and GN family of algorithms were developed in the predictor
corrector form. From examples studied it appears that procedures with p = 2 and
constants 5, = 5, = 8, = 8, = 0.5, which convert the SS and GN algorithms to
Newmark’s unconditionally stable algorithm are superior tn the Houbolt and Wilson #
equivalents with p = 3. Theoretically the SS procedure is better as it requires one
less starting condition as compared to the GN procedure. Thus when p = 3 the GN
procedure the third derivative of x as a starting condition which is not readily available,
Moreover, in S8Sp; the last derivative required during analysis is’i,l. while in GNpj the
last derivative required is %,. However, the 88 procedure requires the equivalent load
vector to be appraximated using a kind of mean value between actual discrete load
points. This is not so for the GN algorithm which uses values only at the end points.
Thus the SS algoritlim uses an additional approximation with regard to the variation
of load between two discrete load points. This poses difficulties in the computation of
the “effective load vector” in elastoplastic problems. So for nonlinear problems the GN
family is seen to be superior.

Elastoplastic stiffness characteristics do not alter the predominant frequency re-
sponse, although a zero frequency component gets incorporated due to plastic displace-
ment, Strain softening can be successfully employed in dynamic problems.
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