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FUNDAMENTAL PERIOD FOR SHEAR WALLED STRUCTURES
*DR. WALI N. AL RIFAIE & **DR. D. N, TRIKHA
ABSTRACT

The paper proposes a rigid-ended element for studying funda-
mental period of reinforced concrete frames having significant joint
sizes, shear walls and frame-shear wall structures. The stiffnes and
the conslstent mass matrices of the proposed element have been

developed. It is shown that the weill known empirical expression
do not carrectly predict the fundamental period as compared to the
analytical values. The paper also gives a brief description of the
computer program prepared for this purpose,

Introduction :

Use of framed skeletal structures becomes unaconomic beyond a certain
height, requiring construction of shear walls which are connected to the
frame by linkage beams at each floor level, Shear walls may also be arran-
ged to form bearing wall type structures for lesser heights. Shear walls are
primarily designed to resist lateral loads arising from wind, seismic or blast
effacts. Since these loads are vibratory in nature, and their magnitudes

depend on the dynamic characteristics of the structura itself, the present
study has been undertaken to develop a procedure to estimate the fundam-
ental time period of vibration for shearwalled structures using an idealisation

which makes the procedure computationally efficient for handling large real
lite structures,

Figs.1 and 2 snow a shear wall and a shear wall-frame structure. As
a first step, the shear wail and the shear wallframe structure are idealised by
rigid-ended alemeants havig an over-all length L, rigid portions of lenthgs a
and b at the two ends and an intermediate elastic length | (=L—~a—b)
having the usual cross-sectional properties like the area A, the moment of
inertia }, etc. It has been found (1) that for proper simulation of axial
characteristics, A, 1 etc. must be associated with the entire length L. The
rigid-ended elements may also be used for idealising framed structures in
which joint size effect is considered significant,

The paper presenrs dynamic analysis for fundamental time period for
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frames, shear walls and shearwall-frame structures using the proposed
rigid-ended alamants

Most codes of practice recommen_ded' {2) the use of one of fhe two
expressions given below for estimating fundamenta! peried T in seconds
for moment resisting frame without bracings or.shear walls

T=01N ‘ '_ (1)
T=003 HvD ] {2)

where N is the number of storeys, and H and D are the height and the
width in metres in the direction of the lateral force in metres, These expre-
ssions are thus unsuitable for use for shear walled structures. Thay also do
not take congnisance of either the maierial of construction orthe extent of
occpancy. The prasent paper also gives the comparison of the results obta-
ined by the proposed analysis with the estimates by the above expressions.
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2. Method Of Analysis

The given structure, whether a frame, a shear wall ora shear wall-frame
combination, is idealised by rigid-ended elementns having lengths of rigid
portions equal to half the depth of the intersecting members. The centre-
line distances remain unchanged. Singe the influance of different degrees
of freedom (DOF) on the tundamental period of the structure idealised in
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this manner is not obvious, three DOF consisting of two translations and
one rotation are assigned to each node. The dynamic equation of equilib-
rium for free undamped vibrations take the following form :

M] <¥> + [K] <Y> = <0> (3)
Where [M[ and [K] are symmetric structure mass and stiffness matrices

respectively of order nxn, and <Y> and <%~ are the displacements and
acceleration vectors respectively of order nx1: where n is the total DOF of
the struciure equal to 3 times the number of nodes,

To develop equations (3), stiffness and congistent mass metrices are
evaluated for each elemant in local axes and then transformed to a common
set of axes. The structure stiffness and mass materices are than assembled
in the usual manner. For introducing boundary constraints, terms in the
corresponding rows and columns of both [M] and [K] matrices are made
zero except the diagonal terms which are chosen judiciously so that the

_ corresponding frequencies are abnormally high and easily recognisable.
Equation (3) then teads to the following eigen problem ;

( [K] —wt [M] ) <4> = <0> (4)
There are several methods for solving the above sigen-problem for
natural frequencies wi, i = 1,2,..n and the corresponding eigan vectors. In

the present study, the sub-space iteration procedure (3) has been used to
determine the first few lowest frequencies and the corresponding normali-
sed model vectors <¢> I, = 1,2,...n,

A combuter program, DYNEL, has been written in Fortan based on the
above formulation, The program has options to use ordinary prismatic
rigid-ended sfements. Fig. 3 shows the flow chart given major steps in
the algorithm of the program,

3. Charactoristics Of Rlgid-Ended Elements

The stiffness and the mass matrices constitute the element charcteris-
tics required for setting up the dynamic Eqn. 3 stated above. The stiff-
ness matrix of rigid ended elements having unequal rigid portions a and b
has earlier been used extensively by the authors in studying elastic-plastic

behaviour of framed stbructures (1). The same is reproduced in the Appe-
ndix for ready reference,

The use of consistent mass materix [M] for rigid ended elements will
bs mora appropriate than the use of lumped mass matrix, for greater accur-

acy and especially, in view of the three DOF assigned to each node.
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Fig. 3 Flow Chan for the Program ‘DYENL’

The terms of the matrix [M] are easily shown (4) to be given by the
following expression,

L ,
m -=J‘ﬁ“ (X) ¥ (X)) ¥ (x)dx (6)
i , i i
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where m(x) is the distributed mass per unit length of the member, and
¥ r (x) is the function giving dynamic displacement along the member
resuiting from unit dinamic displacement along the rth DOF. It is further
assumed th it dynamic displacement funtions are slmllar to those ablained
from static gonsiderations.

Fig. 4 shows a rigid ended element with the six DOF atits two ends,
Fig. b shows the deformed shapes of the alament under unit nodel displa-
cements at the ends. The displacement functions may be defined as
follows in Table 1, These functions are written with the origin being
different for diffe:nt portions of the element for convenience.
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Fig. 5. Deformed Shapes under unit Nodal Displacements
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Table 1 : Displacement Functions For Unit Nodal Displaéemens

Imposed Portion  Origin Displacemesnt Functions

Nodsl
Displace-
ment
d1=1 AD A P1(x) =1—=x/1
d2=1 AB A w2(x) =1
BC B W2(0=1—3 (1) + 2 (x/1)
co C  ¥2(x)=0
d3=1 AB A ¥3(x) =x
BC B W3 () =a[1-3 (/1) + 2 (x/1]]
+ x (1—x/1)
co ¢ ¥3(x) =0
dd=1 AD A wa(x)=xL
d6 <=1 AB A YE(X) =0
‘ BC B W5 () =3(x/1)—2 (x/1)
cD C ¥56({x)=1
46 =1 AB A ¥ 6 (x) = 0
BC B W6 (X) =—b[3 (x/1)—2 (x/1]] .
+x3 /1 (x/1—1)
cd 'C W6 (x) = (x—b)

The evaluation of the integral in eqn. & has thus been carried out as
follows; except for the terms corresponding to axial deformations.

— a l
mij =m.[j4,,(x)¢,(x) dx .+f¢: {x) 4 (x) dx
_ 0 0

b .
+[o 14y 00 e | (6)
J |

where 'm’ is the mass per unit length assumed uniform over the entire
length L.

The consistent mass matrix for the rigid-ended element ‘has been
aveluated explicitly and given below,
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The rotational matrix for transforming the element mass matrix from the
local to tha global axes is the same as that for the stiffness matrix.

4. Example of a Frame

As a first example, a reinforced concrete six storeyed frame consisting *
of floor beams of cross-section 300 x 600 mm, and columns of dimensions
300x400 mm (5th and 6th storyes), 300x500 mm (3rd and 4th storeys) ,
and 300 X600 mm {1st and 2nd storeys} as shown in Fig. 6, has been
chosen for analysis, The bay width is 7 0 m and each storey height equal
to 3.6 m. The frame has been idealised by rigid-ended elements as shown
in Fig. 6 (b). It is seen that the frame has a total of 42 DOF, with six DOF
restrained, " Thus the frame has 36 freqencies and an equal number of

modal vectors,
The above problem has been analysed for the six lowest {reqgencies on

HP 150 microprocessor, using the program ‘DYNEL' Consistent mass
matrices have been used for each rigid-ended element as given by Eqn. 7.

Tha lowest natural frequency w is foundto be 6.203 rad./sec. with
fundamental time pariod T equal to 1.01 seconds,
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. Fig. 6. A Six Storeyed Reinforced Concrete Frame

The same frame has then been analysed by assuming elements to be
priematic without end rigid protions. The lowest natural frequency is found
to be 7 693 rad/sec with the fundamental time period T equal to 0.817
seconds. It is seen that even in case of nor too-wide flanged column
frames, idealisation of the frame by rigid-ended elements, thereby taking
into account the joint size effect, makes significant difference in the value
of the fundamental period

5. Example of a Shear wall

The six storeyed 21.0 m high reinforced concrete’ shear wall in- Fig. 1
has next been analysed for the fundamental period using rigid-ended eles
ments The shear wall has left and right piers 1300 mm wide with 1400
mm wide centrat openings. All floors beams are 600 mm .deep, the roof
beam being 300 mm deep. The wall and the beams are 200 mm thick.

Fug 1 (b) shows idealisation of the shear wall by 18 iigid-ended
elements, The baams have 650 mm long rlgld portlons are 0, 150 mm and
300 mm. :

. The natural frequency of the shear wall, as idealised above, is found to
be 29 628 rad./second with the fundamental period equal to 0.212 second
These values are examined later in the light of Eqns. 1 and 2.
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6. Example of a Frame-Shear Wall Structure

The frame shown in Fig. 6 and the shear wall shown in Fig. 1 have
been combined to give a frame-shear wall structure of Fig. 2 to be analy“ﬂ
next for the natural period. The linking beams are 200 x 600mm at ail
floor levels, the roof level linking beam being 200.x300mm, The total
height of the six storeyed structure is 21.0m.

Fig. 2 shows the idealisation of the frame-shear wall structure by 42
rigid-ended elements with 72 unrestrained DOF. The lenghts of the rigld
portions of differant members are varied depending upon the dimensions of
the intersecting members. The structure has been analysed by the pragram
‘DYNEL’ for the six lowest frequencies out of the total 72 values. The

lowest frequency ts 20.191 rad./second giving the fundamental period equal
to 0.311 second.

7. Discussion cf Results
It is worthwhile to examine the results of analysis obtsinned above in

relation to one another and in the light of €qgns. 1 and 2. Table gives the
comparison in a summarised form,

Teble 2 : Comp_arison of Results

Fundamentar Perncd 1n Seconds
Structure | Analysis | Ean. 1 Eqn.2 (T=09HD
(T=01N)|D=7m | D=2.7m D=4.0m | D=12.86m
Frame with
out rigid
ends 0.817 0.6 0.7114
Frame with
rigidends. 0.013 06 0714
Shear waell 0.212 0.6 1.150 0.945
Frame :
shear wall 0.311 0.6 0.627

Note that Eqns. 1 and 2 are not strictly applicable to the shear wall and the
frame-shear wall structures. Also not that whereas the lateral dimension
D=7 0 m for the frame forusein Eqn. 2 D has taken = 2,7 (distance

between centre lines of the piers), and = 4 0 m (total width) for the shear
wall. ' :
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It is seen that for frame with rigid ends represnting more .
closely the actual behaviour, the fundamentat pariod obtained
by analysis is much higher than the values obtained by using
Eqns. 1 and 2, For the shear wall, the analysis gives T« 0.212
sec, which is Incorrectly predicted by Eqn. 1 as well a8 by Eqn,
2 in spite of using different values of D

8. CONCLUSIONS

The. use of rigid-ended elements for idealising frames, shear .
walls or combinations therof is proposed and the necesaeary char- .
acteristics for such elements have been developed for studying
the fundamental periods. It is shown that the analytical results
cannot be accurately predicted by the empirical oxpressions cur-

rently in use,

Itis to be néted that any computer progrém avallable for
dynamic analysis of frames can be suitably modified to include
rigid-ended elements,
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