STUDY OF SHEAR BEAMS UNDER DYNAMIC LOADS

A. R, Chandraeekaran*

SYN OPSIS

Beams in which deformatrons due to a load are essentially due to shearmg action
are known as ‘Shear Beams’s In practice, cantilever. beams’ of very large cross séctional
area and of small length have predominantly shear deformation. Such type of structures,
however, would have very high natural freqnency and therefore would be - very:. htt]er affected
by ground motion.

The equation of motion of a shear structure is of second degree and so .is the
equatron of motion of multistoreyed framed structure, Therefore, there isa possrbxhty‘that
cantilever shear beams could. bewthebretical fodeld of ‘tultistoreyed structures
paper, it is proposed 10 study shear beams and compare them with multistoreyed frames.

Lo e

1. ‘Basic Equations of the Probléin = = =+ i,

‘The following assumptions are made in solvmg the problem: The material of which

the beam is made is homogeneous, isotropic and behaves elasticallys The deformatlons are '
in shear only.

Considering the equilibrium of elastic and inertia forces, (adoptmg the proccdure

outlined by Rogers (1959)). o \
ov_ _ IR . 12
a2} 0w (5, e
“From 1.1 and 1.2 e i )
3 ad a2 0 IR
~5x AG y atg-}-w(x. t) | e 1.3
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FREE VIBRATION

For the free vxbratxon problem, w(x t) will be equal to zero. If a harmomc solutlon
in time, with circular frequency p, is assumed, thcn equatlon 1.3 reduces to

% (o AGd )—{-pAp’y-.-:O B ' | ' 1.4

The solution of equation 1.4 would give tha frequenc_]es pr and corresponding meode
shapes $r(x). Since a beam has infinite degrees of freedom, there will be infinite frequencies.

In gcneral the free vnbratxon solution has the form

Y(X t)==2 ¢r (x) Dr sin (prt+¢r) . et | 1: 15

GROUN D MOTION EXCITATION
For ground motxon excntatxon

Substltutmg 1. 6 in l 3 and if Z represents r_e.htivg displacement, with respect to ‘the ‘base, °
" at any sectxon X, then A G e e b :
( AG )"""P(x) A(x). +P(x) A(x) a(t) ERRRE T O W L
LetZ s, t)-" 3 ¢r (x)s © R

.. Substituting 1-8, in17

_§° s.(t){ (oAGd¢r }=._~ m(x) g,(t) $e(x)+m(x) a(t)v‘ B

where m(x) has been taken equal to P(x) A(x)
© ¢ From 1.4 and 1| 8,

) {dx( ‘AG - ‘ﬁ)} €r(t)~'—'2 ) p’r.qs,(x) g,(t) CLI0
o combmmg 1.9 and 1.10, . . !
5 (sr+prﬂgr) m(x) ¢,(x) =m(x),at) = S nn

" Expressing the right Kand side of 1. ll in terms of modc functlons ¢,(x), and making
use of the relationship of orthogonahty of modes, namely
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] () . 400 . 9ol - dx=0 forrgsand

f qu(x) m(X) dx ’

~m(x) a(t)-'- za(t) ) - i) - o L12

B f (¢,(x))z m(x) dx '
from 1 ll and l 12

e | / <;l>r(x) m(x) dx | e
T Eedphée=a(t) % e e 1.13
[ @) m(x) dx | - | o

The solution of 1.13 is

f d’r(x) m(x) dx Lo g 00 Tren Bl Attt

€r————~ f a(t) .sin prt—v) dr - 1.14
e Pro / (¢'r(X))2 . m(x) dx .
e o |
from 1.8 and 1.14 . o
D de(x) o [ 6. mdx e e T
Z(x, )=— X p f a(t) Slﬂ pr(t——‘f) dT ‘ : 1.15
£ r=1 ¥ f (¢x(x))* . m(x) dx ° | poao T
If there is damping in the system such that mode superposition -is still . applitable,
then B

H )
J ér(x) . m(x)dx oy
Z(X, t)“"‘ %J gbr(X) o ‘ ft' a(t) e §rpr( )

r=1 P gop . moax®

~ From 1.16, the maximum relative displacement at any sedfioh»x, due to rth mode of
vibration could be expressed as :

" 1 : - Vet
'Z;_(A(r)l"—-"—""Bx(r) . ‘—15; . (Svx ' 1.17
From 1.1, the shear force, V, at any section x is, H i

L AZ® | o
Vx(r)a==ol AG —a;—“ 5 "‘L. » -:' | ,r ' . "_1.18
" The bending moment, MT, at any section x, is
MTx®= f Va®.dx - - T O

whete h is measured from the free end.

sin par(t—7) d - L16,

e
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2. Theoretical Solution

To find the effect of ground motion on a shear beam, its frequencies and mode shapes
are to be determined. 1In certain cases, where the properties of the beam vary in a regular

fashion along the beam, theoretical solutions are possible: (Conway, 1948). Some of tpese
cases are discussed below, Where - theorctic,al solutions are cumbersome or impossible,
numerical methods could be adopted with success,

Let the area of cross section ‘A’ be a function of the length of the beam, that is
A=f(x) ’ o2
Substituting 2.1 in 1.4

d®y f'(x) dy i . Y

where prime denotes differentiation and

__°p? | | 2.2a
Y=T5 -
UNIFORM BEAM

Here fix) is constant. Hence 2.2 reduces to -
2 ' B

Tat+Yy=0 e 23

.+ .Fora cam'ilever’fbéam:with*bouhdéiy‘condiiions;‘“ o

y=0atx=H

.,,' | 2.4
and ra—y~=0 at x=0> , ff" all t . P
the frequency equation is given by R
cos }'H(:O;cos}v?r‘;ll,agr_ v te e R Co- 25 |
that is 71—1-:2%11 T : o IR 26
| where r=1,23...» .
from 2.2a, el .
pr.' 2 . H n’J"*‘p_’ . R } . ‘ ) . R S

The mode shape is given by

@—1). 7. x

fﬁr(x)f-cos >0 ' e 28
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The general free vibration solution is given by - R : o
o v . -
yxt)= 3 {Dr . Sin (prt—}—er)} cos (2_r .m.x 2.9
r=1 2H
NON-UNIFORM BEAM -
' Consider the case when |
 A=f(®)=Ao (a+;’;‘ - 2.10

Where x is measured from free end and Ao, a, b and s are constants.
, Then 1.4 could be written as
‘ dzy . S b/H dy

P tYy=0 e \ 2.11
L = dx +b( ) " dx , _
Lt m (a+_ﬁux)=¢- o
then from 2.11 and 2.12, R | "
d2 s d‘] ‘ AR R TN . R ) )
ity ap Y=o EEE R B o BB
“This is Bessal equation of order q where
1=
= \ |
The solution of 2.13 has the form
y(x)=D, . J(x)+-D; . Y (x) ’ ’ ' 2. 14
- In particular, consider the case when s=2. This corresponds to the case of hnearly
, tapermg beam, then
_los_
=73
and y(tl')=D1 . J-*(4‘)+Da . Ji(\li) ‘ ‘ o ‘ o . 2.15
\‘ = -4‘1— (D', cos ¢+Dz; sin ¢) o : S 2.16 |

The boundary conditions for a cantilever beam are, for all t,
at free end,

{x =-0"*~¢—(7H)“/b} |

oy oy__ . . :
ax-—0, 5 =0 AT o 2T

at bunlt in end
{x=H; ¢="H (14-*/v)} A ) . ‘
A ‘ ‘ ‘ et g
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Using boundary condmons and so!vmg for arbitrary coastants D," and D2, a
frequency equation is obtained which Is of the form

a . ’ l ‘ N ‘J, » ‘
tan YH=—yH (—5) | 218

This is a transcendental equation and can be solved graphically.

For other cases of non-uniform beams, not covered by equation 2.10, the solution is
cumbersome and numerical methods may be adopted.

3. Numerical Solution

If the variation of area f(x) along the length of the beam is a complicated function,
then the theoretical solution of equation 1.4 is practically ruled out. - It is therefore desirable

to adopt numerical techniques in solving such problems. If, however, a high speed computer
is available, even simpler problems are better solved by numerical methods,

The method consists in replacing a continuous system with a dxscrctc system by
concentrating the mass distribution into an equivalent set of discrete point masses embedded
in an ideal massless substance possessing the same elastic properties as the body simulated.

ERROR ANALYSIS OF THE NUMERICAL APPROACH
t

Errors are due to approximating an infinite . degree of freedom system to a finite
degree of freedom system and not due to the numerical technique involved. One type of

error .involves the number of masses used. The other type mvolves the derermmanon of
equivalunt masses and stiffnesses.

To make an error analysis one should know the exact value of items_.under investiga-
tion." The errors in frequency would be investigated here for uniform cantilever shear beams
for which exact theoretical solutions are available.

ERRORS IN FINDING EQU[VALENT MASSES

There are generally two proccdures adopted i in finding out equivalent masses. In one
case, the mass of a segment is divided equally and concentrated ~at the ends (Flg 3.1). In
‘the other case, the mass is concentrated at the centre of a segment. (an 3 2).

F16 3.1

FI1G 32
It has been shown (Duncan--1952) that for a uniform shear beam, 1f the mass pomts
are located at mldpomts of equal segments, the error in frequency varies inversely as the

square of number of segments whereas if the masses are placed at the ends the error varies
as mVerse first power of number of segments. :

[
f
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ERRORS DUE-TO ‘NUMBER OF SEGMENTS

In the case @f shear beam in addition to having an exact solution for the continuous
system, we also have an exact solution for the discrete system (Karman and Biot—1940).

For the continuous system, frequency parameter

P _
G ) >
(A is proportional to p?) - |

For the discrete case, with mass points concentrated at the middle of segments

Arn=2n2 [I—cos &%ﬂ] ’ : 3.2
C @r—Ipa Q—1)t.at |
..—:( T 4) T _( T 19]2)112_7_T +Small terms » 3 3.2a
Here n is the number of segments

Error ésm:i‘%ﬁ—n : ) « 3.3

. ' ; r '

Q2r—12 . 7% . : :
='(:“"r'"’&8)h~‘ll +higher inverse powers of n . 3.3a

This shows that the error in A (thatis, p?) for any given mode ultimately varies:
inversely as the square of number of segments and that proportional error for a given 1
increases rapidly ‘\for higher harmonics. Fig. 3.3 shows a plot of ern versus ‘number of
segments fof the first four modes of vibration. o

In the problemsattemp‘ted by numerical method, n was chosen as. 100. Even if n
had been chosen as 40, it is seen that error wqgmd be negligible.

In the case of n‘on;unif&rm beams, if the mass is assumed to be concentrated at the
centre of gra"vit‘y‘fofv the segments instead of at'the middle of the segments, results obtained
are extremely close to the exact values. (error in frequencies is less than 0.25% in all cases
considered for this im}es‘tigatibn).‘ Bven for the assumption that the mass is concentrated
at the middle of fth'e segl‘nents,_wthek errorin frequcnéiies was- less than 0.85% in all cases
considered for this investigatioﬁ.' ' T ‘

- HOLZER METHOD

This technique is very suitable to solve equations of this type numerically. Consider |
‘equations 1.1 and 1.2 and assumeé - that a “harmonic ‘solution »in time with frequency p i
-applicable.: - Then, for the free vibration problem
V=—o'AG L | b 3

&;__mpy . ‘ ) | . . :;“' M3,5
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Let the beam be divided into a number of equal segments and one typical -section  of

~beam be as shown in fig. 3.4.

A finite change of shear force occurs at each mass Wthh 1s equal to mema force
of mass

AV=mpty 3.6
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DefDo = DEPTH RATIO OF THE BEAM

Be/Bo = BREADIH RATIO OF TWE BEAM
Acfdo ‘= AREA RATIO OF THE BFAM
TAPER RATIO = (I.R.) = Def/Das 8e/Bo »/Ae/Ai

it

i

VALU[S OF TR (//05[/\( Wf/?f 100 8 06 04 »4/1/0194
Flgure 3.6

Vo-l—mapzyo ‘ %,ﬁ ‘*  )
YI—"YO ( 'A G) (Ax)l

Assume that the quantmes Vo and yo are known at the lcft sectnon. .\ Thcn
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Generalising the result and writing expression for the pth section in terms of values
at (n—1)t" gection |

Va =Vn-1+mn-1p2Yn-1 ‘ 3.9

yn.'..—_yn_l——-(a-TAX—é‘)nVn ‘ : 3.10

Thus, for any frequencyvp, if the values V and Yy at a particular section is known, then.

the corresponding values could be found out at all other sections.

’ ’ o m
L '
(-
TRy Meum
1 : '_*__2’(;;‘ R 2Y? :
; -y .
L 2'1(1/::‘ - PMHam -

(2D (1- o) '
4 Q’-Ei_—{',:‘-) &+t -4
i m___
=

5= !Aﬂ’gz;‘_»sz | Y

g

. ’I"’I’Il’:l”"”’ rr

BUILDING MODE) wWHERE MASS AND SPRING CONSTANT
ARE ASSUMED To waRy LINEARLY OVER HEIGHT N BUYLDING,

Figure 3,7 '

PROCEDURE FOR CANTILEVER BEAM

In general, it would not be possible to guess the value of p correctly. ‘However, various
values could be,eir'bitra“rily assigned to p and then Ve evaluated. A plot of p? versus Ve would

. R -
have a.gener‘al appearance as in fig. 3.5, The correct value of p? are those which correspond
Yo the interséction of the curve with the p? axis. : U

&
S
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4 qpemﬁcatmn of the Problems

Lmearly tapermg beams of the type shown in ﬁg 3.6 have been considered for dynamxc
analysis. :

) In all cases, the frequenc1es and responses of the beam like relative displacement with
respect to the base, shear and moment at all sections due to ground motion have been
calculated by the mumerical method outlined above,

5. Discussion of Results

In practice; no beam would have predominantly shear deformations. However, shear
~~ beams could be theoretical models of multistoreyed framed structures as the equatxons of
. motion goverping the behaviour of the two systems are analogus.

UNIFORM CASE

For a uniform multistoreyed framed structure, the frequency of vibration in the s
- mode is (Chandrasekaran- 1963)

pr=2'Jk/m n2 +1‘.w/2 B : : 5.1
'For a uniform shear beam, N
the mass of the beam = p AH . S 5.2
cons1dermg the beam to be dmded into n equal parts
* equivalent mass of element = PAH v :. | , .53
the spring constant of the beam =—é%9~ : o " o | ' ‘ 54
equxvalent spring constant element-—t—]éf%9 ‘ o | . _ ' A5..S

Subsmutmg 5.3 'and 5.5in 5.1, and qbserving that as n is Very large for the shear
szr-——l 1~~2r"‘;‘ 1
204+1 27 2n41

“InAd G _ n 2r—i : )
pr=2 ,\/ H *7AH X o1 ™2 5.6

@@= 7T A/o'G
- g < w * P

- Equation 5.6a is same as.equation 2.7

/2, ' then

5.6a

NON- UMFORM CASE 4 ; S
me 5.3, the variation of mass along the helght for M.S.E.S. (mult:storeyed framed
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structure) should correspond to variation of pA along the height for C.S.B. ,(P-Q,Dtilév!éf shear
beam). Similarly, from 5.5, the variation of spring constant along the‘ leght fqr M.S.F.S.

.....should correspond to variation of o' GA along the height fora'CS.B,

Consider building models for which the mass and stiffness varies linearly along the
height and the linear variation is represefited by parameter a (Refer fig. 3.7). Tfitis assumed
that for an equivalent shear beam p and o’ G remain constant over the height of the beam,
then the variation of A should correspond- to a. Since the variation of A is represented by
(T.R.)%, (refer fig, 3.6), a corresdonds to (T.R.)% s

COMPARISON OF M.S.F.S. AND C.S.B. FOR LINEARLY TAPERING CASES
o ,Dynvamic‘anal‘ysis: has been carried out for M.S.E.S. (Chandrasekaran-1963),  ~ The
- natural frequencies of vibration and responses of the system like relative. displacement’ with
Tespect to the base, shear and moment at all sections due to ground motion have been
_ calculated. . | el : :

~* Also, dynamic analysis of C.S.B. has been carried out for various taper ratios. - .
The various quantities could be expressed as follows;—

MS.F.S. ___ CSB.
in the rth HE e i G el
! 1\.Iatur'al frequency in the rt® mode of C,o, )/ k o 1. 19 '\/[:]
vibration, pr e N THCH BTN

Relative Displacement at any section i, A/—n—f s A/ ‘E. A,/Tf oy
16 ) T il O e f o B

- in the r*® mode of vibration, Z,® , } Car®®. K-S Ca®. oG N E - HSv
} Cst :ﬁA/ km, Sy Cla "/E E.EA. Sv

} Cu®. Vkm. h.S, C'41<f>.J?EG-Jg.EA;HSV

Shear at any section i in the rth mode
of vibration, Vv,

Moment at any section i in the ' mode
of vibration, MTy®

The following quantities of M.S.E.S, “(mli‘l‘t‘istOreyed framed structure) and C.S,B.
(cantilever shear beam) are analogous to each other.

M.S.F.S. S . CS.B.
m ' PAH
n
k . l’l (TIAG
a : (T.R.)2

Figures 5.1 t0 5.4 show respectively plots of p, Z, V and MT versus a: To all ‘the ¢ases; it is
observed that a C.S.B, could be an analogous theoretical model of M.S.F.S, o

bk
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TR ~ COMPARISON OF M.SF.s €S &
| - NATURAL - FREQUENCY
o 1 €SB,

/ 1.2 a - MS.F.S; n:z20
) « - MSFS, n:=10
- G g ta
1.0 . -
- L 1. MoDE
<yn - > o o ( —a
OR » , . l - " *
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5 a6t
04 Zz~o£m‘oo€
- ;
o2
ST, MODE - -
4
0 Y ac T o 08

Figure 5.1

Figures 5.5 to 5.9 show plots of shear diagram. It is also observed that shear diagram
for a C.S.B. is very close and similar to that of a corresponding shear diagram of M.S.E.S.
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COMPARISON OF M.S.F.S.-C.S.B.
TOP RELATIVE DISPLACEMENT

O - C.S.B.

LOp x - MS.F.S, n=10

Cat/n |

OR
Ca ;
1ST. MODE " —
o8F [ /o___/-“‘
06
04T
oz} 2N, MODE | b
e 3R0 MOQE ~ 4TN MODE
0 07 04 06" o8 10 .
R ‘ ,

ohiaN ’
E3.

“Figure 5.2
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T COMPARISON OF M.S.F.S.-C.S.B.
BASE SHEAR
o - C.5.B.
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Figure 5.3
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COMPARISON OF M.S.F.S.-C.S.B.
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. .SHEAR DIAGRAM M.S.F.5.-C.5.B.

L 210
. {APER RATIO = 1.0
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Figure 5.5 .
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SHEAR DIAGRAM: MSFS. -C.S.B.

oL£=064
TAPER RATIO : 0.80
IST MODE
.-C5B _
L - Ms F S) n:m
o 02 . 04 . 08 o8 7o
Figure 5.6
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SHEAR DIAGRAM M.S.F.S. -CS B

o£=0.36,
TAPER RATIO=0.60
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- x.aMS.F.S, n =10
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Figure 5.7
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., SHEAR DIAGRAM M_s.FQs‘.-c.sf‘e

«=020
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Figure. 5.8
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. SHEAR DIAGRAM M.SF.S - C.S.B.
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CONCLUSION
Cantilever shear beams are analogous theoretical models of multistoreyed framed
Structure. The concept of shear beam indicates that once dynamic properties are calculated

for a multistoreyed framed structure (say for n=>5), then the behaviour of similar multistore~

yed structures (that is for all values of n above 5) could be easily predicted.
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APPENDIX
Notations
A — Area of cross section
a(t) — Ground acceleration
H - e
v/ ¢ (x). m(x)dx
Bx — Mode factor = ¢@o :

I @0 m ) dx

C.,Cy'— Frequency coefficients .
Ca,Cai ~  Displacement coefficients; subscript “T” used along with this represents values
at top :
_+C3,C3"—  Shear coefficients; subscr{pt ‘B’ used along with this represents values at base
G — Cy/1.2732

(N
|
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Moment coefficients; subscript ‘B’ used along this represents values at base
arbitrary constant to be determined from initial or boundary conditions

modulus of elasticity
modulus of rigidity

Total length of beam
spring constant

mass

moment at any section
number of masses |
natural frequency of system

damped natural frequency of system; ~ p if ¢ is small, say, < 0.20

index representing mode of vibration

~ Response velocity spectrum

= ” Z a®. o 2P sinpa (t—

time interval

Taper Ratio, defined as per fig. 3.6
shear force at any section

intensity of load at any section
distance measured along the length of

t) d .
maximum

the beam

displacements measured transverse to the longitudinal azis of the beam
relative displacement of any section with respect to the base
mass and spring constant variation parameter defined as per figure 3.7

phase angle between input and output
normal coordinate

mass density of beam

1

~ coefficient of damping expressed as a fraction of critical damping value

ratio of average shear stress on a section to the product of shear modulus

and angle of shear at the neutral axis.
mode shape coefficient



