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ABSTRACT 

 The traditional earthquake-resistant design philosophy involves estimation of the peak elastic 
response for the specified seismic hazard, which in turn requires a modal combination rule for the multi-
degree-of-freedom systems. The typically used rules estimate just the largest response peaks, while the 
second largest, third largest, … peaks are assumed to be of no significance. Considering the possibility 
that structural damage in the post-yield regime can be correlated with these higher-order peaks, a new 
modal combination rule is developed for the ordered peak response of multistoried buildings excited by 
the multi-component ground motions. The proposed rule is formulated by using the stationary random 
vibration theory and by making suitable approximations regarding the peak factors and nonstationarity 
factors. A numerical study shows that the proposed rule performs better than the CQC3 rule when the 
building is stiffer to the ground motion and that the level of accuracy for the higher-order peaks up to the 
10th largest peak is comparable to that for the largest peak. 

KEYWORDS: Multi-Degree-of-Freedom Systems, Multi-component Ground Motions, Higher-Order 
Peaks, Order Statistics, Modal Combination Rule 

INTRODUCTION 

 The present practice of designing multistoried buildings for seismic resistance involves the use of 
design (response) spectra as specified for the site under consideration. Design spectra typically specify the 
maximum elastic response of the single-degree-of-freedom (SDOF) oscillators of different periods and 
damping ratios under the perceived seismic hazard. Structural response estimated from these spectra is 
reduced via specified reduction factors in order to take advantage of the energy dissipation during the 
inelastic response of ductile structural systems. Estimating the (elastic) peak structural response in the 
case of a multi-degree-of-freedom (MDOF) system involves the use of a modal combination rule, unless 
the system can be assumed to vibrate as a SDOF system under the earthquake excitation. One can 
possibly generate time-histories consistent with the design spectra and estimate the peak structural 
response via numerical integration due to the easy availability of inexpensive and fast computational 
power. However, practicing engineers find it more convenient to estimate the peak response directly from 
the response spectra. Furthermore, seismic codes rely on simple and direct procedures, like modal 
combination rules, wherever possible.  
 Several researchers (e.g., Goodman et al., 1953; Rosenblueth and Elorduy, 1969; Der Kiureghian, 
1981; Wilson et al., 1981; Singh and Mehta, 1983; Der Kiureghian and Nakamura, 1993) have worked on 
the estimation of the largest peak response in a MDOF system from a prescribed design spectrum and 
have proposed simple rules of modal combination for different situations. The most popular of these 
rules, i.e., the SRSS (Square-Root-of-Sum-of-Squares) rule by Goodman et al. (1953), is meant for the 
structures with well-separated dominant modes and for the ground motions acting like white noise over 
those modes. Rosenblueth and Elorduy (1969) made the first attempt to account for the correlation in 
different modes, while Der Kiureghian (1981) and Wilson et al. (1981) proposed the popular CQC 
(Complete Quadratic Combination) rule without requiring the use of the duration of earthquake 
excitation. However, both rules are however based on the use of white noise idealization of the excitation 
and are therefore inappropriate for application when the dominant frequencies of the system are outside 
the frequency-band of significant energy in the excitation. Singh and Mehta (1983), Der Kiureghian and 
Nakamura (1993), and Gupta (1994) later proposed more generalized modal combination rules that could 
account for the narrow-band seismic inputs and effects of high-frequency modes. None of the past efforts, 
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except that by Gupta (1994), could however be used to estimate the higher-order (second largest, third 
largest, …) response peak amplitudes. This is perhaps because higher-order peaks in the linear response 
were never recognized to constitute an important data for the earthquake-resistant design, even though 
Amini and Trifunac (1985), Gupta and Trifunac (1987a), and Gupta and Trifunac (1989) made significant 
attempts to estimate the ordered peak amplitudes in the response of MDOF systems. Recently,          
Sadhu (2007) showed that higher-order peaks in the linear response may be useful in a simple estimation 
of a damage measure during the inelastic response. Gupta (1994) developed a modal combination rule 
that proposed an improvement over the existing rules in a simple manner and also provided for the 
estimation of the higher-order peaks. 
 The modal combination rules as mentioned above were proposed for the specific situation of 
translational ground motion acting along one of the structure axes. However, as shown by Penzien and 
Watabe (1975), it is important to consider all three translational components of the ground motion acting 
simultaneously in estimating the structural response. They showed that there exists a set of principal 
directions along which the ground motion components are uncorrelated. They also observed that these 
directions remain stable with time during the strong motion phase of the ground motion and that the major 
principal axis remains horizontal and directed from the epicenter to the site while the minor principal axis 
is kept vertical. 
 Development of combination rules for the multi-component ground motions was first attempted by 
O’Hara and Cunnif (1963). They suggested the NRLS (Naval Research Laboratory Sum) method, in 
which the resultant response is defined as the maximum of the three components plus the SRSS of the 
other two. Chu et al. (1972) proposed the use of SRSS method for finding the resultant response. This was 
later accepted by USNRC (1976). Among the percentage rules, Newmark (1975) suggested the (Max + 
40%) rule wherein the maximum of the three components is added to 40% of the other two. In a slightly 
modified form, Rosenblueth and Contreras (1977) proposed the (Max + 30%) rule, which was later 
incorporated in the ATC-3 provisions (ATC, 1978). Anagnostopoulos (1981) made a comparative study 
of different rules and showed that neither of the existing rules properly accounted for the cross-correlation 
between the ground motion components. Smeby and Der Kiureghian (1985) and Menun and Der 
Kiureghian (1998) generalized the CQC rule to the CQC3 (Complete Quadratic Combination with three 
components) rule for application to multi-component excitations, based on the Penzine-Watabe 
characterization of ground motions and thus accounting for the cross-correlation between the different 
ground motion components. Hernandez and Lopez (2002) developed a more versatile combination rule, 
GCQC3 (Generalised Complete Quadratic Combination with three components) that takes into account 
the quasi-horizontal and quasi-vertical principal components. None of these rules is however meant to 
estimate the higher-order response peak amplitudes. Further, these rules are developed specifically for 
those situations when the input ground motion can be assumed to be white noise over the dominant 
structural frequencies. The response spectrum-based formulation by Gupta and Trifunac (1987b) is the 
only effort in the direction of estimating the higher-order peaks under multi-component excitations. 
However, this formulation is for the situation when the structural axes are aligned with the principal axes 
of the ground motion, and further this does not provide the convenience of a modal combination rule. 
 Based on the above, there exists a clear need to develop a simple and more versatile modal 
combination rule that can estimate not just the largest peak but also the second largest, third largest, … 
peaks in the response of a multi-storied building under the excitation of multi-component ground motion 
with arbitrary characteristics. The present study aims to develop such a rule for a fixed-base, MDOF 
system excited by a multi-component ground motion. The proposed rule is developed by broadly 
following the procedure adopted by Gupta (1994) under the framework of stationary random vibration 
theory. Performance of the proposed rule is evaluated through a numerical study based on six recorded 
ground motions with wide variety in their characteristics and for a 5-story building with seven different 
sets of floor mass and story stiffness properties. 

FORMULATION OF THE PROPOSED RULE 

1. PSDF of a Typical Response 

 Let us consider a linear, classically damped, lumped-mass system having n  degrees of freedom 
(DOFs). The system is fixed-base and is subjected to three translational ground accelerations at its base: 
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1( )gu t  and 2 ( )gu t  along two mutually perpendicular horizontal directions ( sX  and )sY  aligned with the 

structure axes, and 3( )gu t  along the vertical direction. On expanding the response of the system in terms 

of the normal coordinates and undamped mode shapes of the system, let jω  and jζ  respectively denote 

the natural frequency and damping ratio in the jth mode. Further, let ( )
1

jγ , ( )
2

jγ , and ( )
3

jγ  respectively 
denote the participation factors with respect to 1( )gu t , 2 ( )gu t , and 3( )gu t  in the jth mode. 

 On assuming stationarity in the excitation and in the response, PSDF of the response ( )r t  of the 
system may be expressed as (Sadhu, 2007) 

 ( )
3 3
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where ( )kl
zS ω  is the cross-PSDF of the kth and lth components of the base acceleration for k l≠ , and is 

the PSDF of the kth component for ;k l=  jr  is the normalized amplitude of the response ( )r t  in the jth 
mode of vibration and is expressed as a linear combination of the elements of the jth mode shape (e.g., it 
is equal to the ith element of the jth mode shape for the displacement response at the ith DOF); and  
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(with i = 1− ) is the transfer function relating the relative displacement of the equivalent SDOF 
oscillator in the jth mode to the input base acceleration. 

 On using the partial fractions for Re( ( ) ( ))j qH Hω ω∗  as in Gupta and Trifunac (1990), Equation (1) 
leads to 
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where jqC  and jqD  are the coefficients given in terms of jζ , ,qζ  and   = q jω ω/  as  
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with 

 2 2 2 2 2 2 2 2 2 2 2 2 48 ( )(1 ) 2( )( ) (1 )jq j q q j j qB ζ ζ ζ ζ ζ ζ = + − − − − + −       (6) 

jqC  becomes maximum at   = 1, while jqD  becomes maximum near   = 1 (it is equal to zero at   = 
1). Both sharply fall off to small values as 1  and 1 . 

 In general, the translational components 1( )gu t , 2 ( )gu t , and 3( )gu t  are correlated processes. 
However, Penzien and Watabe (1975) have shown that there exists a set of (orthogonal) principal 
directions, along which the components of ground acceleration are uncorrelated. The orientation of these 
axes remains approximately constant with time during the strong motion phase of the ground motion. 
During this phase, the major principal axis is horizontal and directed from the epicenter to the site, the 
intermediate principal axis is horizontal and perpendicular to the major axis, and the minor principal axis 
is nearly vertical. Since the axes sX  and sY  of a structure in plan may not always align with the major 
and intermediate principal axes, pX  and pY , as shown in Figure 1, components of the motion along the 
axes of the structure are usually correlated. The degree of this correlation depends on the relative 
orientation of the structure axes with respect to the principal directions of the excitation. 
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Fig. 1  Illustration of structure axes and principal axes of ground motion 

 It is possible to express the PSDF matrix [ ( )]zS ω  of the ground acceleration vector { ( )}gu t  along 

the structure axes in terms of the PSDF matrix [ ( )]p
zS ω  of the acceleration vector { ( )}p

gu t  along the 
principal directions as (Smeby and Der Kiureghian, 1985) 

 [ ( )] [ ] [ ( )][ ]T p
z zS R S Rω ω=  (7) 

where [ ]R  is the transformation matrix given by 
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in terms of the relative orientation θ  of the major principal axis pX  with respect to the structure axis sX  

(see Figure 1). The off-diagonal elements of [ ( )]zS ω  and [ ( )]p
zS ω  denote the cross-PSDFs of the 

corresponding ground acceleration components. Since the off-diagonal elements of [ ( )]p
zS ω  are zero, 

i.e., kl p
zS ,  = 0 for ,k l≠  the off-diagonal elements of [ ( )]zS ω  are real quantities. Also, the cross-PSDFs 

of the vertical component 3( ( ))gu t  with the two horizontal components 1( ( )gu t  and 2 ( ))gu t  are zero. 

 On substituting the expressions of PSDFs and cross-PSDFs of the accelerations along the structure 
axes from Equation (7), Equation (3) becomes  
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This expression can be used to obtain the response PSDF of the system from the (three) PSDFs of 
principal ground accelerations and orientation of pX  with respect to sX  (instead of PSDFs and cross-
PSDFs for the ground accelerations along the structure axes). 
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2. Ordered Peak Response Amplitudes 

 In stationary random vibration theory, ordered peak amplitudes of any response are estimated by 
computing moments of the PSDF of the response process and by multiplying the peak factor computed 
from these moments with the root-mean-square (r.m.s.) value of the process. This procedure is followed 
in this section to formulate the expression for an ordered peak of a typical response ( )r t . 

 On taking the pth moment of ( )rS ω  about the origin,  

 
0

( )dr p
p rSλ ω ω ω

∞
= ∫  (10) 

Equation (9) leads to 
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where, 

 k k
p jq jq jq p jC Dδ ν, ,= +  (12) 
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is the term determining the extent of cross-correlation of the jth and qth modes in the pth moment during 
the excitation by the kth principal component of the ground acceleration. Further, in Equations (11) and 
(13), 
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, = | |∫  (14) 

is the pth moment of the PSDF of the relative displacement response of a SDOF oscillator with jω  

frequency and jζ  damping ratio, and subjected to the base acceleration ( )p
gku t , and 
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is the pth moment of the PSDF of the relative velocity response of this oscillator. It may be mentioned 
that for p = 0, k

p jν ,  is a measure of the deviation of the rate of zero crossings of the displacement response 
of the same SDOF oscillator from that in the case of an ideal white noise excitation (Gupta, 2002). This 
factor decreases with the increasing natural period and becomes zero near the dominant period of the 
ground motion. Further, k

p jν ,  together with jkD  becomes an important component of cross-correlation 

when jω  is not close to the dominant frequency of the ground motion and therefore may be ignored when 
the excitation acts like white noise over the frequencies of interest. 

 Equation (11) may be used to calculate the moments, 0
rλ , 2

rλ , and 4
rλ , of the response PSDF by 

taking p = 0, 2, 4, respectively. The r.m.s. value of the response process may be estimated by taking the 
square-root of 0

rλ , and the peak factor (for the desired order and level of confidence) may be estimated by 
using all three moments along with the strong motion duration of excitation (Gupta, 2002). On 
multiplication of the r.m.s. value with the peak factors for different orders, estimates of the largest, second 
largest, third largest, … peaks may be obtained. In order to include the effects of inherent nonstationarity 
in response, the (stationary) r.m.s. value may be modified by multiplying it with a nonstationarity factor. 
We assume that this factor is known. It is further assumed that the peak factors would remain affected due 
to the nonstationarity, as those depend on the ratios of the moments of response PSDF, not on the 
moments per se. The nonstationarity factor may be close to unity provided the excitation PSDF ( )kk p

zS ω,  
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is compatible with a response spectrum (for the kth principal component of the ground acceleration) and 
thus includes the effects of nonstationarity indirectly (see, for example, Kaul, 1978; Unruh and Kana, 
1981; Christian, 1989). 
 In view of the above discussion, the sth ordered peak amplitude of the response process may be 
expressed as 
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where ( )s
rη  is the corresponding peak factor and ( )s

rβ  is the nonstationarity factor. 

 Continuing with the logic of relating the ordered peak response with the r.m.s. response via 
nonstationarity factor and peak factor, 0
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,  is the peak factor (1)
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where PSVk
j  (= SDk

j jω ) is the largest peak amplitude of the pseudo-velocity response. 

 In the next sub-section, suitable approximations will be made to develop a modal combination rule 
from Equation (17). 

3. Approximations for the Proposed Rule 

 Equation (17) may be used to estimate the ordered response peak amplitudes for the same level of 
confidence for which SDk

j  and SVk
j  have been estimated. This may also be used to estimate the peak 

amplitudes consistent with the seismic hazard at a site, which is characterized by certain spectral 
displacement (SD) and spectral velocity (SV) curves for the three components of the ground motion. 
There is a need, however, to have reasonable estimates of normalized nonstationarity and peak factors (in 
Equation (17)) and nonstationarity and peak factors for the displacement and velocity responses (in 
Equation (18)). 
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 It is proposed to carry out two types of simplifications: one relating to the factors in Equation (17) 
and another to the factors in Equation (18). The normalized nonstationarity and peak factors refer to how 
different these factors are in the largest modal response and in a higher-order system response. The 
normalized nonstationarity factors may be assumed equal to unity provided (i) the system response and 
the modal response for any order of peak are affected by comparable amounts due to nonstationarity, and 
(ii) a higher-order response is affected as much by the nonstationarity as the largest response in the modal 
and system responses. The former is strictly not true as the rate of convergence to the state of stationarity 
by a modal response depends on the number of cycles per unit time in response (or the modal frequency) 
whereas this rate in the system response is governed by the natural frequencies of the dominating modes. 
Due to this, the normalized nonstationarity factor is likely to be less than unity in the case of lower 
modes, and greater than unity for the higher modes. Similarly, normalized nonstationary factors may be 
more in the case of higher-order peaks as nonstationarity affects a higher-order response more than a 
lower order response (Gupta and Trifunac, 1987a). For simplicity, however, D k

jβ ,  is uniformly assumed 

equal to unity. The normalized peak factor (1)
D k
jη ,
,  also involves the effects of (i) the peak factors being 

different for the system response and the modal response (for the same order of peak), and (ii) the peak 
factors being different for different orders of peaks (for the system or modal response). The effect of the 
former is negligible due to little sensitivity of the peak factor to the governing statistical parameters (i.e., 
band-width and number of peaks) within the range anticipated for both system and modal responses. The 
effect of the order of peak can be approximated by a simple expression proposed by Gupta (1994), and 
therefore, the normalized peak factor is proposed to be 
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 The nonstationarity factor for the modal displacement response in Equation (18) is likely to be greater 
than that for the modal velocity response due to domination by the longer periods. For simplicity, 
however, this discrepancy between the two factors is proposed to be neglected. The peak factors for the 
modal displacement and velocity responses are anyway expected to be very close as both refer to the 
largest peak. 
 In view of the above approximations, the proposed modal combination rule may be expressed as 
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with  
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 (21) 

and (1)
D k
jη ,
,  as in Equation (19). It may be mentioned that the proposed rule becomes same as the CQC3 

rule (Menun and Der Kiureghian, 1998) for 0
k

jq jqCδ , =  and for s  = 1. The former condition is effectively 

obtained by assuming 0
k

jν ,  as zero, which, as discussed earlier, is strictly true only in the case of white-

noise excitations. Further, 0 ,k
jqδ ,  as in Equation (21), is similar to the cross-correlation term used in the 

formulation of Singh and Mehta (1983). 
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NUMERICAL ILLUSTRATION OF THE PROPOSED RULE  

1. Example Building and Excitations 

 In order to illustrate the proposed rule, two horizontal components of six ground motion records as in 
Table 1 are considered. Vertical component is not considered, and thus k = 2 for each of these cases. 
Principal directions (major and intermediate) for each record are obtained through eigenvalue analysis of 
the 2×2 (temporal) covariance matrix of the common strong motion phase of the two horizontal 
components, as identified by the duration definition of Trifunac and Brady (1975). Orientation of the 
major principal direction with respect to the first component of each example motion in Table 1 (see the 
4th column) is given in Table 2. For example, orientation of the major principal axis with respect to the 
S04E component in the case of the Borrego Mountain motion is 23.5o

({ ( )})p
gu t

 (clockwise). Using these values of 
orientation, principal components of the example motions  are obtained as [ ]{ ( )},gR u t  with θ  
in Equation (8) taken as the orientation of the major principal direction (from Table 2). 

Table 1: Details of the Example Ground Motions 

Record 
No. Earthquake Site Components 

1 Borrego Mountain Earthquake, 
1968 

Engineering Building, Santa Ana, 
Orange County, California 

S04E 
S86W 

2 Imperial Valley Earthquake, 1940 El Centro Site, Imperial Valley 
Irrigation District, California 

S00E 
S90W 

3 Kern County Earthquake, 1952 Taft Lincoln School Tunnel, 
California 

N21E 
S69E 

4 Michoacan Earthquake, 1985 Av. University Centre, Mexico City 
N00E 
N90E 

5 Parkfield Earthquake, 1966 Array No. 5, Cholame, Shandon, 
California 

N05W 
N85E 

6 San Fernando Earthquake, 1971 Utilities Building, 215 West 
Broadway, Long Beach, California 

N90E 
N00E 

Table 2: Details of the Principal Components of Example Ground Motions 

Earthquake 
Orientation of the 
Major Component 

(degree) 
Characteristics 

Major 
Component 

Intermediate 
Component 

Borrego Mountain 
Earthquake, 1968 –23.5 

Tg 5.6  (s) 1.9 
PGA (g) 0.014 0.011 

Imperial Valley 
Earthquake, 1940 

–21.6 
Tg 0.68  (s) 0.51 

PGA (g) 0.35 0.19 
Kern County 

Earthquake, 1952 
34.4 

Tg 0.65  (s) 0.42 
PGA (g) 0.21 0.15 

Michoacan 
Earthquake, 1985 

26.8 
Tg 2.10  (s) 2.07 

PGA (g) 0.19 0.08 
Parkfield 

Earthquake, 1966 
–18.4 

Tg 0.32  (s) 0.30 
PGA (g) 0.42 0.39 

San Fernando 
Earthquake, 1971 

–8.2 
Tg 5.82  (s) 4.91 

PGA (g) 0.03 0.02 
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 The Fourier and pseudo spectral acceleration (PSA) spectra of the principal components of the six 
example motions are shown in Figures 2(a)–2(f) and Figures 3(a)–3(f). Figures 2(a)–2(f) show these 
spectra for the major principal component of the Borrego Mountain, Imperial Valley, Kern County, 
Michoacan, Parkfield, and San Fernando motions respectively, while Figures 3(a)–3(f) show these spectra 
for the intermediate principal component of these motions. In each figure, the two spectra are normalized 
to their respective maximum values. Table 2 gives the values of dominant period gT  (the period 
corresponding to the maximum of the Fourier spectrum) and peak ground acceleration (PGA) for both 
principal components of each of the six example motions. It may be observed that all the six motions 
cover a wide range of energy distributions, with dominant periods as 5.82 s at one end for the San 
Fernando motion and 0.3 s on the other for the Parkfield motion. In terms of the band of significant 
energy, the Michoacan motion is at one extreme with significant energy over a narrow band of 1.8–3 s, 
while the Kern County motion is at the other with significant energy over a wide band of 0.2–6 s. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2  Normalized Fourier amplitude and PSA spectra for the major principal component of    
(a) Borrego Mountain, (b) Imperial Valley, (c) Kern County, (d) Michoacan,                 
(e) Parkfield, and (f) San Fernando earthquake motions 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3  Normalized Fourier amplitude and PSA spectra for the intermediate principal 
component of (a) Borrego Mountain, (b) Imperial Valley, (c) Kern County,                  
(d) Michoacan, (e) Parkfield, and (f) San Fernando earthquake motions 

 A 5-story symmetric building having rigid floor masses supported by massless, inextensible columns 
is considered for the numerical study. Two translational DOFs are considered at each floor, and therefore, 
the example building is a 10-DOF system (n = 10). Seven different cases of this building involving 
different proportions in floor masses and story stiffnesses are considered. Table 3 shows the values of the 
reference floor masses and story stiffnesses (in the sX - and sY -directions), and Table 4 shows seven 
different sets of factors α  and β  that are multiplied with the reference masses and stiffnesses, 
respectively, for the seven example cases of the building. Table 4 also shows the corresponding 
fundamental periods of the building in the sX - and sY -directions. It may be observed that a wide range 
of fundamental periods of the multistoried buildings is covered by these example cases (0.03–2.0 s in the 

sX -direction). The example building is assumed to be classically damped with modal damping ratio as 
0.05. It may be noted that the pairs of the closely spaced modes in the example building are uncoupled, 
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and therefore, the illustration would not include the contribution of modal cross-correlation due to the 
closeness of frequencies for a single-component excitation. This is not a serious limitation though, 
because the proposed rule accounts for this contribution on well-established lines and thus the focus here 
is indeed not on examining the proposed rule against this contribution. 

Table 3: Details of the Reference Floor Masses and Story Stiffnesses 

Floor Level 
from Top 

Floor Mass 
(t) 

Story Stiffness in 
the Xs

Story Stiffness in 
the Y-Direction  

(kN/m) 
s-Direction  

(kN/m) 
1 800 2212000 1392000 
2 800 2696000 2179000 
3 800 3100000 2697000 
4 800 3424000 3112000 
5 1150 4998000 4792000 

Table 4: Properties of the Example Building for Different Cases of Mass and Stiffness Properties 

Case α β 
Fundamental Period 
in the Xs

Fundamental Period 
in the Y-Direction 

(s) 
s-Direction 
(s) 

I 0.125 16 0.031 0.029 
II 0.25 8 0.063 0.058 
III 0.5 4 0.125 0.117 
IV 1 2 0.254 0.234 
V 2 1 0.53 0.467 
VI 4 0.5 1.1 0.938 
VII 8 0.25 2 1.87 

2. Results and Discussion 

 To illustrate and evaluate the performance of the proposed modal combination rule, the example 
building is subjected, in all seven cases (of mass and stiffness properties), to each of the six pairs of 
horizontal principal excitations at its base, and the estimates of the largest base shear in the sX -direction 
are obtained from (i) the (exact) time-history analysis, (ii) the proposed rule, and (iii) the CQC3 rule 
(Menun and Der Kiureghian, 1998). Since the orientation θ  of the principal axis pX  of the ground 

motion (with respect to the structure axis sX ) is an input parameter, the estimates of the largest base 
shear are obtained for the entire range of θ  from 0o to 180o

 Figures 4(a)–4(f) show the comparisons of the largest peaks of base shears in the 
. 

sX -direction for 
the exact, proposed, and CQC3 analyses in the cases of Borrego Mountain, Imperial Valley, Kern County, 
Michoacan, Parkfield, and San Fernando motions, respectively. Each figure shows the comparisons for 
the entire range of θ  values. For these results, the example building is assumed to have mass and 
stiffness properties for Case IV, with fundamental periods equal to 0.254 and 0.234 s in the sX - and sY -
directions, respectively. All six figures show that the largest base shear in the sX -direction is symmetric 
about θ  = 90o

sX
 in the cases of proposed and CQC3 rules. This is due to the fact that the example building 

is symmetric and therefore there is no coupling between the modes of the building in the - and sY -

directions. The curves for the time-history results are however asymmetric, since 1( )p
gu t  and 2 ( )p

gu t  are 
not exactly uncorrelated (because the orientation of the principal directions has been determined based on 
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the strong motion segment of the ground acceleration). Due to this, accelerations along the sX - and sY -
directions in the case of θ  = α  become different from those in the case of θ  = 180o α , in terms of both 
frequency content and cross-correlation. In the case of this “residual cross-correlation” between the two 
principal components becoming zero, the two acceleration components (in the sX - and sY -directions) for 
θ  = α  would be different from those for θ  = 180o α  only in the sense of the sign of the cross-PSDF 
between them, and this will not make any difference in the base-shear results due to symmetry of the 
structure. It may be observed from Figures 4(a)–4(f) that the estimates of base-shear from both rules (i.e., 
proposed and CQC3) are in reasonably good agreement with those from the time-history analysis results 
at all values of θ , except in the case of the Kern County motion. For this motion, both rules lead to large 
errors at around θ  = 60o. This is possibly due to significant “residual correlation” between the two 
principal components. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4  Variation of largest base shear in the Xs-direction with orientation θ for (exact) time-
history analysis, proposed rule, and CQC3 rule in the case of (a) Borrego Mountain,    
(b) Imperial Valley, (c) Kern County, (d) Michoacan, (e) Parkfield, and (f) San 
Fernando earthquake motions 
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 For a more direct comparison of the performances of the proposed and CQC3 rules in the case of the 
base shear in the sX -direction, absolute error is averaged over the entire range of θ  between 0o–180o

mean meang nT T, ,/
 and 

plotted with respect to  for each of the six ground motions. Here, meangT ,  is the average of 
the dominant periods of the major and intermediate principal components of the ground motion, and 

meannT ,  is the average of the periods of the example building in the sX - and sY -directions. Since there is 

not much difference in the periods in the sX - and sY -directions, it is assumed that mean meang nT T, ,/  would 
be a good estimate for the mean of the ratios of dominant period to natural period in the two principal 
directions and thus this parameter would properly describe the extent to which the building is stiff to the 
ground motion. Higher the ratio, stiffer would be the building relative to the ground motion. Figures 5(a)–
5(f) show the plots of absolute error with mean meang nT T, ,/  for the proposed and CQC3 rules in the cases of 
the Borrego Mountain, Imperial Valley, Kern County, Michoacan, Parkfield, and San Fernando motions, 
respectively. It may be observed that the performance of the proposed rule is quite good with the average 
error remaining within 16% in all the cases considered here. CQC3 rule is associated with greater errors 
in most of the cases, even though these errors do not exceed 22%. The performance of the proposed rule 
is significantly better than that of the CQC3 rule, particularly when the building is stiffer relative to the 
ground motion ( mean mean 1g nT T, ,/  ). In the case of a narrow-band motion like Michoacan motion, this 

happens for mean mean 1g nT T, ,/ > . On the other hand, for a broad-band motion like Kern County motion, 

there is no clear value of mean meang nT T, ,/  (in the range of building periods considered) above which the 
proposed rule performs significantly better than the CQC3 rule. It may also be observed that when the 
building periods fall within the band-width of the ground motion and 0

k
jq jqCδ , = , both rules lead to 

similar errors which are due to the approximations made for the nonstationarity factors. 
 The performance of the proposed rule is evaluated next in the estimation of the second largest, third 
largest, … response peaks. Figure 6 shows the higher-order peak base shear along the sX -direction, after 
normalization with respect to the largest value, in the case of the Borrego Mountain motion, with the 
example building assumed to have mass and stiffness properties for Case VI (with natural period equal to 
1.1 s in the sX -direction) and for θ  = 75o

θ

. First 20 peaks are considered for this plot and results obtained 
from the proposed rule are compared with those from the time-history analysis. These results indicate that 
the ratio of the largest peak to a higher-order peak, as in Equation (19), works well in the example 
considered. Similar trends have been observed with the other ground motions as well. For a more 
comprehensive evaluation, absolute error values of the estimated first 20 peaks (from the proposed rule 
with respect to the time-history results) are averaged over  (varying between 0o and 180o

 It will be useful to also judge the performance of the proposed rule on the basis of algebraic 
percentage error and to consider this over all 20 peaks in an average sense. With this purpose, the 
averaging is done now over both 

), and those are 
compared for the example ground motions in Figure 7 (with mass and stiffness properties remaining same 
as for Case VI). It is clear from this figure that for the first 10 peaks, the proposed formulation leads to 
very good estimates, with the absolute average error remaining close to 10%. The error increases for the 
next 10 peaks due to the effects of nonstationarity being dependent on the order of peak, as discussed 
earlier. Even for these peaks, the absolute average error remains within 30%, except in the case of 
Imperial Valley and Parkfield motions. It may be noted that the example building considered for these 
results is stiff with respect to the Borrego Mountain, Michoacan, and San Fernando motions, and is 
flexible with respect to the Imperial Valley, Kern County, and Parkfield motions. Thus, the results 
presented in Figure 7 cover a wide range of relative flexibility of building systems with respect to the 
ground motions. 

θ  (varying between 0o and 180o) and the order of peak (for the first 20 
peaks), and the average error values are given in Table 5 for all 42 combinations of building periods and 
example motions. Negative values in this table indicate that the estimates from the proposed rule on 
average are greater than the time-history results. There is no specific trend available from these results. 
However, the proposed formulation seems to overestimate the first 20 response peaks much more often 
than underestimating, and the extent of error typically ranges from 10% to 20%. There are cases like 
Parkfield motion in which same nonstationarity factor cannot be assumed irrespective of the order of 
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peak, and therefore there is a need for further improvement in this direction. Nevertheless, it is clear that 
besides being more accurate than the CQC3 rule (for the largest response peak) in specific situations, the 
proposed rule provides reasonably accurate estimates for the higher-order response peaks in a simple 
manner. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5   Variation of absolute error averaged over θ with Tg,mean/Tn,mean for the proposed and 
CQC3 rules in the case of (a) Borrego Mountain, (b) Imperial Valley, (c) Kern County, 
(d) Michoacan, (e) Parkfield, and (f) San Fernando earthquake motions 
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Fig. 6  Comparison of normalized ordered peak base shear in Case VI for θ = 75o as obtained 

from the exact (time-history) analysis and the proposed rule in the case of Borrego 
Mountain motion 

 
Fig. 7  Variation of the averaged (over θ) absolute error in the ordered peak amplitude with the 

order of peak for the Borrego Mountain (BM), Imperial Valley (IV), Kern County (KC), 
Michoacan (MX), Parkfield (PK), and San Fernando (SF) motions 

Table 5: Percentage Error with the Proposed Rule as Averaged over Orientation and Order of 
Peak for Different Cases of Mass and Stiffness Properties and Ground Motions 

Example Motion Case I Case II Case III Case IV Case V Case VI Case VII 

Borrego Mountain –11.6 –8.84 –3.36 –2.58 –14.7 –11.5 1.58 
Imperial Valley –6.7 –7.23 –18.4 –21.9 –13.1 –18.3 –11.6 

Kern County –17.1 –20 –6.1 –9.3 –19.2 –2.83 12.6 

Michoacan 21 12.54 8.8 5.1 –24 –9.41 –14.5 
Parkfield –38.8 –36.5 –24.1 –27.6 –25.4 –19.8 –15.6 

San Fernando –1.42 0.26 –7.74 –3.53 –10.9 –10.6 –3.7 

 The proposed rule requires SV ordinates of the principal components of the input ground motion for 
the estimation of 0

k
jqδ ,  (see Equation (18)). This may limit the usefulness of the proposed rule because the 



94 A Modal Combination Rule for Ordered Peak Response under Multi-component Ground Motion 
 

 

characterization of seismic hazard at the site under consideration is not always available in terms of the 
SV curves. For such situations, we propose to approximate SV ordinates in terms of the pseudo-spectral 
acceleration (PSA) curves and mean period cT  of the ground motion as (Gupta, 2008) 

 

2 21 2(PSA ) (PGA )

SV
1 2PSA

k k
j j k

j ck
j

k
j j k

j c

T

T

πω
ω

πω
ω

 − ; >
= 
 ; ≤


 (22) 

where PSAk
j  (= 2SDk

j jω ) is the largest peak amplitude of the pseudo-acceleration response (of the SDOF 

oscillator with jω  frequency and jζ  damping ratio), PGAk  is the peak ground acceleration, and k
cT  is 

the period corresponding to the center of gravity of the undamped PSV curve, for the kth principal 
component of ground acceleration. It may be observed that for SVk

j  equal to PSAk
j jω/  for all natural 

frequencies of the system, the proposed rule in the case of the largest response peak will become same as 
the CQC3 rule. It has been observed that by approximating SV ordinates as in Equation (22), the 
numerical results undergo only minor variations and therefore same observations can be made as before 
(for example, see Table 6 for the recomputed results of Table 5 on using the SV approximation of 
Equation (22)). 

Table 6: Percentage Error with the Proposed Rule, as Averaged over Orientation and Order of 
Peak for Different Cases of Mass and Stiffness Properties and Ground Motions, on Using 
the SV Approximation 

Example Motion Case I Case II Case III Case IV Case V Case VI Case VII 

Borrego Mountain –11.2 –7.5 –2.4 –1.98 –12.1 0.12 3.11 
Imperial Valley –8.2 –7.1 –16.6 –19.1 –17.3 1.3 –13.3 

Kern County –28.1 –21.2 –8.4 –12.7 –33.8 –3.06 -7.0 
Michoacan 16.2 12.4 9.63 4.9 -19.2 1.04 –9.4 
Parkfield –32.3 –41.5 –30.3 –29.2 –36.2 –10.2 –39.6 

San Fernando –7.6 0.07 7.3 –3.54 –9.45 –0.04 –31.2 

CONCLUSIONS 

 A new modal combination rule has been formulated for the ordered peak response of a MDOF system 
subjected to multi-component ground motion. Both, the excitation and the response, have been assumed 
to be stationary, and the effect of nonstationarity has been included with the help of the response spectrum 
characterization of the ground motion. Following assumptions have been made in order to arrive at a 
simple form of the rule. First, the peak factors have been assumed to be same for (i) the largest modal 
displacement and largest modal velocity responses, and (ii) the system response and modal displacement, 
for any order of peak. Secondly, the effects of nonstationarity have been assumed to be same for (i) the 
largest modal displacement and largest modal velocity responses, and (ii) the largest modal displacement 
and the system response, for any order of peak. It has been also assumed that the ratio of the peak factor 
for a higher-order peak to that for the largest peak in the modal displacement response is dependent only 
on the order of the peak, irrespective of the mode. The proposed rule requires (as input) characterization 
of the seismic hazard in form of the SD and SV spectra for the principal components, and the orientation 
of the major principal axis of the ground motion with respect to the building. No assumptions have been 
made regarding the cross-correlation between different modes and regarding the nature of the input 
excitation. 
 The proposed combination rule has been illustrated with the help of a 5-story building having seven 
different sets of floor mass and story stiffness properties and by using six recorded ground motions with 
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significantly different frequency characteristics. Results show in the case of the largest base shear 
response that the estimates by the proposed rule follow the (exact) time-history estimates reasonably well 
for the entire range of the orientation of the major principal axis, and that those are more accurate 
compared to the estimates from the CQC3 method, particularly when the building is much stiffer to the 
ground motion. The maximum absolute error averaged over different orientations is about 16% in the case 
of the proposed rule. Unlike the CQC3 rule, the proposed rule also estimates the higher-order peak 
amplitudes and in a very simple way. The estimates from the proposed rule for the largest 20 peaks are 
found to be often larger than the time-history estimates, with the extent of error typically ranging between 
10–20%. For the largest 10 peaks, however, the average absolute error remains close to 10%. Considering 
that only first few orders of peaks are important for the nonlinear response, larger errors for the lower 
orders of peaks is not a serious limitation. The proposed rule requires additional input data in form of the 
SV spectra of the principal components, but this requirement can be easily addressed by using the PSA 
(or PSV) spectra of these components. 
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