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DYNAMIC ANALYSIS OF ASYMMETRIC MULTI-STOREYED
WITH SHEAR WALLS

S. K. AGARWAL,* 5. P. SHARMA,* AND B.K. GOYAL*
INTRODUCTION

Increasing heights of multi-storeyed buildings, a better understanding of the
wind, blast and seismic forces as well as the need for achieving maximum possible
economy coupled with stringent safety requirements is leading to a greater, attention to
the dynamic behaviour of buildings.

The behaviour of plane frames with shear walls under dynamic loads has besn
investigated in detail (1,2). It is possible to predict their mode shapes and fraquencies
with reasonable accuracy. An actyal building, however, is a three dimensional structure
consisting of rigid floors supported by vertical members.

These floors behave like rigid bodies under lateral loads i.e., they have practically
no inplane deformations, but rotate as rigid bodies influencing the stress distribution in
the vertical members significantly.

A method for the static analysis of multi-storeyed buildings with rigid floors
under lateral loads has been reported by the authors elsewhere (3). The present paper
oxtends this analysis to the dynamic behaviour of such buildings.

An experimental investigation has also been carried out to determine the reliability
of the theoretical approach.

ASSUMPTIONS

The proposed analysis is based on the following assumptions:

The meterial is isotropic and elastic,

Translation and rotation of the frames are small.

In qag.g of shear walls the beam between the centre and the edge of wall is infinitely
rigid.

Distributed mass of vertical members is replaced by lumps at floor levels.

Damping effect is neglected.

ANALYSIS

A typical building scheme consisting of n X I columns and m storeys is shown
in fig. 1. Ttis treated as two systems of plane frames, lying in the x and v planes
respectively, orthogonal to each other and connected by rigid floors. Under the action
of the lateral loads the floors undergo a rigid body movement as shown in fig. 2. Since
the slabs are rigid in their own planes it is assumed that the lateral loads on each of
the frame systems act at the outside joint on the side of the origin only.

Equations of equilibrium of each of the floors in the x, y and 6 (rotation) direction
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Fig. 1. A Typlcal Building Scheme IR
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Fig. 2b. Rigid Body Movement of a Floor
The moment of an element about the origin

Figure 3 shows the plan of a typical floor having a distributed mass ABCD.,

= pr3fidx dy ‘
where r is the radius vector and p the intensity of mass (per unit area). Also

rt=x4 8
Since 0 and 6 are constant, total moment

¢+b pta
=§J p (x* +y%) dx dy

q P
If p is assumed to be constant, total moment

—§ P_ﬂ_fz(as+3ap+3p=+b=+3bq+3q’)
3 .

pab

The equivalent mass to be used in the [M] matrix, therefore, is
3

(@* + 3ap + 3p® + b* + 3bg + 3¢%)
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Fig. 3. Typical Floor Plan with Distributed Mass ABCD
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For the concentrated mass W having a radius vector R, the equivalent mass is

W R®
The mass matrix [MJomyxsm is thus a diagonal matrix whose elements are

Erooe Emy El"‘ Em,"h--- Mm

where

& = lumped mass on the floor 7, and

M = total ‘equivalent mass’ corresponding to rotation 6 at the floor .
In the foregoing derivation it is assumed that the other two inertia forces

corresponding to the accelerations U/ and ¥ do not contribute to the moment. This is
possible only if the origin is chosen to coincide with the centre of mass. If this is not
done, the mass matrix has two sets of off-diagonal elements and the problem becomes
highly complex in as much that the eigen values of a large unsymmetric matrix have
to be computed.

While the formulation of a mass matrix for an arbitrary origin is straight forward
the complexity pointed out above has restricted the scope of present investigation to such
problems where the centres of mass on all the floors fall on a single vertical line.

ILLUSTRATIVE EXAMPLE

The method has been used to analyse the building shown in fig. 4. The choice
of the building was dictated by the availability of this model in the laboratory.

Frequencies and mode shapes were found for the following three cases:
Case | Self-weight only.
Case Il Two masses (corresponding to the mass of the two acceleration pickups used

in the experimental investigation) shared between the two top floors.
Case Il Cylindrical mass on all floors except the top floor as shown in fig. 4.

EXPERIMENTAL INVESTIGATION

An experimental investigation was carried out by S. K. Agarwal to ascertain the
lowest three resonant frequencies of this model under steady state vibration at the
Structural Dynamics Laboratory of the School of Research and Training in Barthquake
Engineering, University of Roorkee (4). The model was mounted on a plane vibration
table fitted with a mechanical oscillator and a speed controlled motor fig. 5. Amplitude
measurements were recorded using.

() acceleration pickups mounted on the vertical members as near to the top
floor as possible (fig. 4), and,

(ii) strain gages pasted on columns and shear walls near the base (fig. 4). The
frequency-amplitude plots for the three cases referred were obtained and are
given in fig. 6, 7, 8 and 9.
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TABLE |

Periods (Secs)

Case Theoretical Experimental
Mode 1 Mode 2 Mode 3 Mode 1 & 2 Mode 3
| 0.033 0.032 0.022 0.03 0.023
Il 0.038 0.035 0.027 0.036 0.024
11} 0.050 0.043 0.027 0.042 0.031

Table 1 shows the theoretical and experimental values of the first three
frequencies for the threc cases. In this particular case the first two resonance
frequencies were too near to be distinguished experimentally.

It is seen that the agreement between the theoretical and experimental values is
excellent. The maximum deviation is only 16 7a- The maximum rotation is induced
in the structure in the third mode. Theoretical U, ¥ and 0 plots are given in fig. 10,
11 & 12,
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Fig. 10. u, v, 8 Plot for Mode 3 Case I



26

Bulletin of the Indian Society of Earthquoke Technology

------- ROTATED POSITION

Fig. 11. w, v, 9 Plot for Mode 1, Case I1I
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Fig. 12. u, v, 8 Plot for Mode 3, Case 3

MODEL ANALYSIS

Knowing the response U, ¥, and 8, (of centre of mass) for the rth floor, the
model displacements at rth floor for the jth frame were computed using equations
(6) and (7). Assuming 6% damping in all modes and using Housner’s average spectra
curves the most probable values of frame/shear wall displacements were evaluated in
accordance with IS: 1893-1974 for Case I and III and are plotted in figs. 13 (a & b).

In case I the most probable response of frame/shear walls was calculated
considering these as two dimensional plane frames and is shown in fig. 13(a). The effect
of torsion was superimposed over these values as per IS: 1893-1974. Table 2 gives
the comparison of forces on frame and shear walls when considered as independent plane
elements, considering torsion as per code provisions and the reported approach.
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Fig. 13. Most Probable Response

During the investigation it was observed that in case Il the response of two shear
walls was approximately equal though the mass was placed eccentrically. Another
extreme case was considered in which the superimposed mass was increased by a factor
of 10 and placed at one of the shear walls. Even in this case the response of the two
shear walls was indentical.

NUMERICAL PROBLEMS

It is seen from Table 2 that the storey shears for the two shear walls are different
.while the symmetry of the structure demands the two to be identical. It was also noticed
that the deformations (most probable response) tallied to three figures. The difference
is due to numerical problems associated with computing shears from given deformations
—moments will be less susceptible. However, the values obtained are good enough for
a general comparison since the difference between the three approaches is clearly
brought out.

COMPARISON OF THE THREE APPROACHES

It is observed that, for the frame, the 2D and the IS code approaches yield nearly
same storey shears. This shows that eccentricity affecting the frame is small. The 3D
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TABLE 2.
(Storey Shears in Gms.)

Frame Shear walls
Storey .. . g Reported h

Considering As per Reported |Considering  As per gported approac

2D action IS 1893  approach | 2D action IS 1893 Left Right
8 57.2 57.3 93.0 34.0 62.0 56.0 25.0
7 119.8 120.1 196.0 64.0 123.0 86.0 102.0
6 175.6 175.3 ©289.0 87.0 174.0 114.0 116.0
5 224.5 225.4 370.0 104.0 216.0 141.0 151.0
4 265.5 266.5 438.0 117.0 249.0 167.0 162.0
3 297.1 298.2 489.0 125.0 273.0 192.0 175.0
2 318.5 319.7 523.0 130.0 289.0 213.0 191.0
I 327.1 328.3 536.0 133.0 296.0 239.0 201.0

values, on the other hand are significantly higher indicating a greater participation of
the frame in the oscillations of the structure.

The shear wall values are nearly doubled when the eccentricity is considered in
accordance with code provision while the corresponding values for the 3D approach
though higher than the 2D values, are considerably lower.

It would appear that the proposed approach shows a more balanced participation
of the two ¢lements the frame and the shear walls. On this example 2D approach
underestimates the forces in both the elements and the codal provision results in
underestimation in one and over estimation in the other.

CONCLUSION

The agreement between experimental and predicted values shows that the
proposed approach may be used with confidence for the dynamic analysis of asymmetric
multistoreyed buildings with shear walls.

Comparison of design forces (most probably values) obtained by analysis of
constituent plane elements, by following the codal provisions (IS 1893-1974) for
eecentricity and those found using the proposed approach shows that in this example the
former two lead to an underestimation. While no definite conclusion can be drawn
from a single example it is obvious that the methods currently used may lead to



30 Bulletin of the Indian Society of Earthquake Technology

underdesigning. Whether they consistently underestimate these forces merits further
examination. The possibility of an underestimation has, however, been established.

ACKNOWLEDGEMENT

This work was carried out at the Structural Engineering Research Centre, Roorkee

and ic;lcxool of Research & Training in Earthquake Engineering, University of Roorkee,
Roorkes.

REFERENCES

1. Tso, W.K. & Chang, H.,, “Dyanamic Analysis of Plane Coupled Shear Walls™ Jr. of Engineering
Mechanics Division, Proc. of ASCE. Vol. 97, No. EM]1, 1971, pp. 33-48.

2. Goyal, B, K., Sharma, §. P, and Agarwal, 8. K., “Dynamic Analysis of Plane Frames with Shear
Walls”, Bulletin ISET, Vol. 12, No. 3, pp. 120-127, Sept. 1975,

3. Sharma, 8. P., Goyal, B. K., Agarwal, S. K., *Lateral Loads on Multi-Storeyed Buildings with

Rigid Fioors”, Proc. of the Regional Conference on Tall Buildings, Bangkok, January
23-25, 1974, pp. 291-300,

4. Agarwal, 8. K., “‘Dynamic Characteristics of Multi-Storeyed Buildings with and without Rigid
Floor Rotation”, M. E Thesis, SRTEE, University of Roorkee, Roorkee, 1975, -

APPENDIX |

Stiffness matrix for a framed building system with rigid floors.
Consider a plane frame y! (as shown in fig. 1) loaded by lateral loads acting on
joints 1, 2, m laying in the x — z plane at y =0 only. Let p'(m X 1) be this load vector,

3'(m x 1) the vector representing lateral movement (v) of the joints 1,..,m, 8! the
vector representing all other deformations of all the joints arranged in any convenient

order, then
Kll Kal] 8# _ Pi (1)
K ks Lo

The matrix at the extrome left is appropriately partitioned stiffness matrix of the
frame Y.

Here
K =[KNT
Equation (1) can ba rearranged to get
K¥=P (i=12,...n (2)
where
K =K' — K K] Kyt 3
Similarly for a frame x/ lying in the y =0 plane

K =P (j=1,2,...1) 4
where

K= KJ — K [KJ1! K o)
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Vectors 3/ and P/ represent the lateral movement (v) and lateral load on joints
1, 2...m of the frame X’.

To relate 3 and 3/ to the floor movements consider a typical floor shown in fig. 2
whose movement is defined by the displacements U, and ¥, in the x and p directions
respectively and a rotation 6,. Suffix r refers to the rth floor.

For the frame Y7, lateral displacements 3, (r = 1, 2.. ., m) are given by

8(' = V' + X{ Sill er

where X; is the ordinate of frame Y7 as shown in fig. 1, 5,/ is the rth component of the
vector &, ¥, that of the vector ¥ and 9, that of the vector 6.

Since 6, is small

Sin 0, =~ 8,
Thus
=¥+ X80 (6)
Similarly
¥=U—Ys8 )

Vectors U, ¥ and 6 are the rigid body displacements of the floors.

Since the floors are in equilibrium under the action of loads P/ and P/ acting on

the frame system Y/ and X7, total forces in the X and ¥ directions are zero and the
moment of the forces about, say, the origin is zero.

The external load vector in x-direction,

0= r

(8)
j=1,..n
Total exteranal load vector in y-direction.
R=p P 9)
=i, 0
Total moment about the origin.

i=Ll...n J=1,..,1

Using expression (2), (4), (6) and (7) equations (8), (9} and (10) may be expressed

U R
[ 1

as
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[K], the stiffness matrix of the system is defined as

o 0 a
[K=}0 o a,
%y Ay %g
a1=21<1 a,,=-2¥,1<f
“5‘=2XilK’ + YK
i= n

where =1,2,...,

i=12,...,1



