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ABSTRACT

A new stiffness design method is presented for finding the set of storey stiffnesses
of the elastic shear building, supported by prescribed frequency-dependent complex
springs, which exhibits a specified distribution of mean peak interstorey drifts under
. design earthquakes. A frequency-independent substitute model is introduced to estimate
seismic responses of the original frequency-dependent model. A closed form solution to
a hybrid inverse eigenmode problem is derived and the qualification conditions on the
specified fundamental frequency and eigenvector are disclosed. The formula is then
shown to be useful for developing the efficient seismic stiffness design method.
Response analysis on the original frequency-dependent model in the frequency domain is
required only for demonstrating the validity and accuracy of this design method.

Keywords: hybrid inverse problem, seismic stiffness design, frequency-dependent
foundation, soil-structure interaction, site-dependent spectrum
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INTRODUCTION

Building structures and other civil engineering structures are supported by the
ground and a better model for representing the characteristics of dynamic soil-structure
interaction is a set of frequency-dependent complex springs (Thomson and Kobori
(1963), Kobori et al. (1966), Veletsos and Wei (1971}, Luco and Westmann (1971),
Wolf (1985)).

The purpose of this paper is to develop a direct method of seismic stiffness design
for finding the set of storey stiffnesses of the elastic shear building, supportéd by pre-
scribed frequency-dependent complex springs, which exhibit a specified distribution of
mean peak interstorey drifts to a set of design-spectrum compatible earthquakes.
Prediction of the seismic response of such an elastic shear building inevitably requires re-
sponse analysis in the frequency domain. It seems extremely inefficient and undesirable
in the preliminary design stage to conduct such a response analysis for a large number
of design earthquakes and to repeat design modification based upon the data obtained in
the response analysis. In this paper, a more systematic and efficient design procedure
based on the response spectrum approach is developed which adopts a shear building
model (FI model) supported by frequency-independent complex springs to approximately
estimate the seismic interstorey drift of a shear building medel (FD model) supported by
frequency-dependent complex springs. It is of theoretical significance to note that this
fairly good correspondence of seismic drifts between these two models is guaranteed by
the theorems (Nakamura and Takewaki (1989a)) on the correspondence of fundamental
frequencies and eigenvectors. The features of the present design method are as follows;
(1) as an approximate solution to the problem of seismic stiffness design of a FD modei,
the seismic stiffness design of the FI model is employed, (2) a new closed form solution
to a hybrid inverse eigenmode problem is derived and utilized for the seismic stiffness
design of the FI model.

The problem of analysis of a structure supported by a set of frequency-dependent
complex springs has been investigated extensively. Kobori et al. (1964), Parmelee et al.

(1968) and Jennings and Bielak (1973) investigated the harmonic and seismic response
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characteristics of structures supported by frequency-dependent complex springs. Bielak

(1973) proposed an iterative method for finding the undamped fundamental natural

frequency of a multi-storey shear building on semi-infinite visco-elastic ground. Then

higher-mode natural frequencies have been evaluated by using the stiffness matrix

- obtained for the caiculated fundamental natural frequency and an approximate procedure

for evaluating damping ratios of this system has also been proposed. Warburton (1978)

obtained undamped natural frequencies of a uniform tower structure on semi-infinite

elastic ‘ground using the same method as Bielak (1973) and clarified the effects of
mechanical and geomcfﬂ;al prt;ﬁéﬂiés of the system on the natural frequencies and har-

monic responses. Gupta and Trifunac (1991) proposed a simplified response spectrum

superposition method including soil-structure interaction.

To the best of the author's knowledge, it appears that almost all of the previous
works are on analysis of behaviour of structure-foundation systems. It seems possible
through a great deal of parametric analysis to reveal the seismic response characteristics
of structure-foundation systems or to find a desirable design among many desighs such
that a certain set of response requirements is satisfied. However, parametric analysis is
not necessarily a‘direct method and it would require a great de#l of computational tasks
especially for structures with huge degrees of freedom or with many design variables.
While a direct method of seismic stiffness design of shear buildings supported by
frequency-independent compiex springs has been proposed in a previous preliminary
paper (Nakamura and Takewaki ( 1989b)), no direct method of seismic stiffness design
has ever been proposed for structures supported by frequency-dependent complex
springs. Nonlinear eigenvalue'problems have to be solved for structures supported by
frequency-dependent springs. Here, the direct method implies that the member
stiffnesses and/or strengths of a structure satisfying design constraints are found without
design-sensitivity analysis or parametric analysis as stated just above. The principal sig-
nificance of proposing a direct design method for structure-foundation systems is to fa-

cilitate the achievement of a structural design with well-balanced stiffnesses or margins to
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elastic limits of a structure and its foundation in the preliminary design stage where a
great deal of computational tasks is not desired and allowed.

Although simplified design earthquakes are employed in this paper, it is due to the
fact that the principal objective of this paper is to develop a direct design method for shear
buildings with frequency-dependent complex springs for the first time and to present the
basic concept of the method. It is expected that the fundamental concept of the proposed
design method can be extended straightforwardly to a problem of stiffness design for
other class of structures, e.g. shear-flexural building models and moment-resisting

building frames (Takewaki et al.(1998)), supported by frequency-dependent foundations.

PROBLEM OF SEISMIC STIFFNESS DESIGN
FOR FREQUENCY-DEPENDENT MODELS

Consider an f-storey elastic shear building, as shown in Fig.1, supported by pre-
scribed frequency-dependent complex springs. The i-th floor from the bottom except the
ground floor will be called 'floor i . Let m;, Ig; and h; denote the mass of floor i, the
moment of inertia of floor i around its centroid and the height of the i-th storey,
respectively. It is assumed that, while the mass of each floor includes the effect of
masses of ail the structural elements adjacent to the floor, m; and I; will not be changed
in the process of design modification. Let k; and c; denote the stiffness of the i-th storey
structural elements with respect to the relative horizontal displacement between floor i-1
and floor i without rocking component and the damping coefficient with respect to the
corresponding relative horizontal velocity between floor i-1 and floor i. A set of
stiffnesses k={k1...kf}7 of the shear building is chosen as the design variable vector and
will be called ‘design k' where ( )T indicates transpose of a vector.

A frequency-dependent complex spring is a proper model for representing dynamic
interaction between soil and a foundation. The complex stiffnesses Kz(w) and K #®) of
the horizontal and rotational springs, respectively, supporting the base are expressed in

terms of real and imaginary parts as

Ky(w)=ky(w)+iocy (@) n
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Kp(®) = kp(@)+ tcp(w), )
where i and @ denote the imaginary unit and excitation frequency, respectively. To
simply show the essential feature of the proposed formulation, coupling between the
horizontal and rocking components is neglected in the present formulation (see, for
example, Bielak (1978)). When the coupling is not negligible, the present formulation
must be modified. An augmented procedure will be shown later (after eqn (15)). It is
sufficient that ky (@), kg(w), cy (@),cp(®) are given numerically. In this paper the only
case is dealt with where ky(w) and kp(w) are single-valued non-increasing positive
functions of frequency.

If the kinematic interaction effect is negligible (rigid slab footing of negligible
thickness) and the rocking component of the ground acceleration is negligible (see, for
example, Gupta and Trifunac (1991)), the equations of motion of the model shown in
Fig.1 in the frequency domain to the horizontal ground acceleration i, (1) may be

expressed as

[K (k) + K p(ky (@), k(@) +i{Cp + Cr(cy (@),cx(@))} - *M]U(w) = -MrU,(w)
3)
where U, () is the Fourier transform of lig(r) and Kp(k), Kp(ky(®),kgp(w)), M,

U(w) and r indicate the following matrices or vectors.

[k +k, —k,
. 0
K
ki + kiyy
KB(k)‘—" .'. _kf—]
kf—l + kf -kf ?
ke O
sym. 00
- O.J
0 0 0 Mp; Mg Mg,
K p (kyy (@), kp()) = ky(@) 0 |, M= E E |
sym. kp(w) sym. Ey

Mp = diag(my---ms), Mpgg=(m---m)7, Mpg={mH, omeHY,
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Fig.1. Elastic shear building supported by frequency-dependent
complex springs (FD2 model)
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f f f 2 f i
E = Eomb Ey=3mH;, Es=YmH2+ ¥ I,., Hi=3Ynh,
i= i=1 i=] i=0 J=1

U(@) = {U)(@)--Uy(@)--Up(®) Up@) ©p@)}T,

r={0-.01 0 @

The damping matrix Cjp for the Super-structure can be derived by replacing {k i1 by {c;}
and Cp(cy(w),cp(®)) can be derived by replacing ky(w),kg(®w) by cy(W),cpl(w).
Although the kinematic interaction effect is neglected and only a horizontal ground motion
is considered in the present paper, the extension of the present formulation in the context
of design to more general cases is open to further research.

The model shown in Fig.1 will be called an 'FD2 model' in order to distinguish it
from three other auxiliary models shown later. The purpose of this paper is to find the
set of storey stiffnesses of the FD2 model which exhibits a specified distribution of mean
peak interstorey drifts to design earthquakes compatible with a site-dependent design re-
Sponse spectrum (Mostaghel and Ahmadi (1979)) (see Appendix 1). The design
earthquakes are defined for lig () at the free ground surface level. In this paper the
relative displacement between adjacent floors without the component due to rocking will
be called the 'interstorey drift' for the sake of simplicity of expression. The rcT!ative
displacement between adjacent floors without the component due to rocking just
corresponds to the actual deformation of the storey and sometimes utilized as an index for
functionality checking. Let & imax and SJ denote the mean peak interstorey drift of the j-
th storey and its specified value. The corresponding problem of seismic Stiffness Design
for Frequency-Dependent models may be stated as:

[Problem SDFD]

Find the design k of the FD2 model with prescribed frequency-dependent complex
springs Ky (w) and K (@), for which the following constraints on mean peak
interstorey drifts are satisfied when subjected to design earthquakes compatible with a

specified design response spectrum.
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ajm=gj (j..—..l’-..,f) (5)

The response analysis in the frequency domain is required to obtain a time-history
response of a structure supported by frequency-dependent memebrs. Since this response
analysis would require a great deal of computational task for a large number of design
earthquake motions, it is neither convenient nor efficient to conduct it at the preliminary
design stage. This difficulty can be avoided if the mean peak interstorey drifts of the
shear building of design k supported by frequency-dependent complex springs are ap-
proximately estimated with the use of the following three auxiliary models. The shear
building of design k supported by {ky,kg}, that supported by {ky,kg,Cx,Zg} and that
supported by {ky (@), kp(@)} will be referred to as the FI1 model of design k, the FI2
model of design k and the FD1 model of design k, respectively, where ky = ky (@) ),
kg = kp(@,), Ty =cy(@,), Tg =cg(@,) (see Fig.2). Here @, denotes the fundamental .
natural circular frequency of the FD1 model of design k. |

PROBLEM OF SEISMIC STIFFNESS DESIGN

FOR FREQUENCY-INDEPENDENT MODELS
Consider the following problem of seismic Stiffness Design for _ErequencyQ
Independent models (FI2 models). The solution to this problem will be adopted as an

approximate solution to Problem SDFD later.

[Problem SDFI]
Find the design k of the FI2 model with kpy (@), k(@) and with ¢y (@, ),cp(®,)
such that the following constraints on mean peak interstorey drifts are satisfied when

subjected to design earthquakes compatible with a specified design response spectrum.

ajnmx:gj U l,".',f) (6)

Note that @, is the fundamental frequency of the FD1 model of design k. The
mean peak interstorey drift &;p,, of the FI2 model of design .k is evaluated approxi-
mately by the following well-known procedure.
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The damping matrix Cjp defined as a matrix proportional to the stiffness matrix can
be obtained by specifying the damping ratio h; for the fundamental mode of the shear
building with a fixed base which has the fundamental frequency o,

Cp= %KB(E) @

s
The damping matrix Cr(cy(@)),cp(@,)) of the foundation is such that cy(w) and
cp(®@) in CF(cH(a)),cR(a))) are replaced by cy(@) and cp(@,), respectively. Since
the FI2 model has a non-classical damping matrix, classical normal modes do not exist.
In this paper, an approximate procedure of ignoring off-diagonal components in the
process of modal decomposition is adopted so that classical modal superposition is
applicable. Then the r-th damping ratio ) of the FI2 model of design k may be
evaluated by

w0 = 1 TICp+Crlcy (@) cp@ ) 1o'”
20, @(T)TMQ('")

, (8)

where @, and- ® denote the r-th natural circular frequency and the r-th eigenvector, re-
spectively, of the FI1 mode] of design k. It is shown later through time-history
response analysis that this treatment is appropriate for the present model (FI2 model).
Although Bielak (1976) proposed another procedure for evaluating damping ratios such
that the frequency dependence of damping coefficients is téken into account, the basic
procedure due to Thomson et al.(1974) is employed here so as to be consistent with the
procedure for evaiuating the natural frequencies of the FI1I model.

With the use of the damping ratios of the FI2 model, the mean peak interstorey

drifts of the FI2 model can be evaluated by the SRSS method as

& max = 21{‘}’[”((135-')—¢&?1)SD(7};32('))} G=1f), ©)

where y")(= @ TMp/ o TMe™")), <D§-'), T and Ny denote the r-th participation
factor, the j-th component of the r-th eigenvector, the r-th natural period of the FIi model

of design k and the number of adopted modes in the SRSS method, respectively.
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Sp(T;h ) in eqn (9) is the design displacement response spectrum and is expressed as
Sp(T;h) = Sy(T:h)T /(27) in terms of the design velocity response spectrum given in
Appendix 1. Note that eqn (9) will also be used later for evaluating the mean peak inter-
storey drifts of a FI2 model of any design k.

In order to find the solution to Problem SDFI, an efficient method will be
developed which utilizes a closed form solution of stiffness design of elastically sup-
ported shear buildings for a specified fundamental frequency and a specified set of

lowest-mode interstorey drifts based upon a new concept of hybrid inverse formulation.

HYBRID INVERSE PROBLEM FOR FI1 MODELS

While all the components of a fundamental eigenvector can be specified in the the-
ory due to Nakamura and Yamane (1986) for shear buildings with fixed bases, only
those components of the fundamental eigenvector excluding horizontal and rotational
displacements of a base can be specified in the present case. This is due to the fact that
finite stiffnesses of horizontal and rotational springs supporting the base are prescribed in
advance. Then the horizontal and rotational displacements are to be found through an
analysis procedure. Since the design problem for finding k and the analysis problem for
finding some of the components in the fundamental eigenvector are mixed in the present
problem, it may be appropriate to call it a hybrid inverse problem. When the horizontal
and rotational spring stiffnesses are prescribed as ky = ky (@, ),kg = kp(&@;), a Hybrid
Inverse Problem in lowest eigenvibration for Frequency-Independent models (FI1

models) may be stated as follows,

fProblem HIPFI]
Find the design k of the FI1 model which has the fundamental frequency @; and
the interstorey drift components {A,---A £} in the fundamental eigenvector.

The governing equations of lowest eigenvibration of the FI1 model with the fun-
damental frequency @, and the fundamental eigenvector o' = {U,-U; Up © F}T may

be written as;
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[K (k) + K (ky.kg) - QMDY =0, (10)

where ﬁ, = 512. Since the lowest-mode interstorey drifts (4;} are related to {U;} by
Ui-Ui=4,G=1--,f; Uy=0), U; can be expressed in terms of {A;).
U,.=ZAJ. (i=1-5) an
j=1

Substitution of eqn (11) into the last two equations of (10) provides

[Dl Dz]{UF}z_{Da}‘ (12)
D, Dy ||OF D;
where D). ..., Ds represent the following quantities,
£y - b b it S
D =E, o Dy=B,Dy=3¥m 3 A;, Dy =E3—ﬁ,D5 =XmH, 3 A;  (13)
1 =l j=1 1 i=] j=1

It should be remarked here that eqn (12) does not include the design variables k and
constituies a set of simultaneous linear equations for U/ Fo © F-

The specified fundamental frequency @, must satisfy the inequality condition
@ <@ where @, denotes the fundamental frequency of the elastically supported rigid
model (rigid FD1 model). It is important to note that the specified fundamental frequency
@; in PROBLEM HIPFI is also the fundamental frequency of a FD1 model and this
condition @; < @, is completely different from the lemma stated in the previous paper
{Nakamura and Takewaki (1989b)) for structures with frequency-independent supporting
stiffnesses. This condition @, <@, and the regularity of the coefficient matrix in eqn
(12} in the range of @, < &, can be proved by means of the Rayleigh's principle. U F
and O are then obtained from eqn (12).

Up=D2Ds - DyDy ©p = 22Ds - DiDs

s t4a, b
DD, - D;? DDy - D,? ( )

Note that U and © are functions of the specified fundamental frequency @, and the
specified lowest-mode interstorey drift vector A = {A)---A f}T in Problem HIPFI. Up

and @ will hereafter be denoted by Up(@),A) and Og(@,A), respectively.
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Substitution of eqns (11) into the first f equations of (10) and summation of the resulting
equations from the j-th through the f-th provide the solution to Problem HIPFIL.

Q _ _ : :
k] =—A_‘:‘%m;{UF(wIsA)'*'eF(a)]sA)H; +I=Z|A’} (J = 1!"'vf) (15)

If the coupling term of ground stiffness is not negligible, the present formulation
can be extended straightforwardly simply by modifying the term D, in eqn (13) to
D" = E) — (kg /$Y)) where kyg = kyp(@;) and kyg(e) is the coupling term of ground
stiffness in eqns (1, 2). This modification is based on the exact governing equation of
undamped lowest eigenvibration.

It is of theoretical and practical significance to disclose the qualiﬁcation conditions

which the specified frequency and eigenvector have to satisfy.

Property 1

Let all the masses and moments of inertia of floors be prescribed and the supporting
spring stiffnesses be prescribed. The sufficient conditions for the specified eigenvalue
and the corresponding specified eigenmode to provide the positive storey stiffnesses are;
i) @ <dy,

(i) {A)--Af) (A 20, *,A ¢ # 0) have the same sign.

The specified fundamental frequency @, in PROBLEM HIPFI and Property 1 is
also the fundamental frequency of a FD1 model and Property 1 is completely different
from the property stated for structures with frequency-independent supporting stiffnesses
in Nakamura and Takewaki (1989b). The difference will be shown clearly in the sequel.

It is possible to show that —D),~D, given by eqn (13) and DD, — D;% in eqn (14)
are positive functions of @, in the range of @, < d;. The proof is shown briefly.

DD, - D% in eqn (14) can be expressed as

1 [ o _
D\D, - D2 =57{a,w14 ~ (@)@ + o3 (@)} (16)
1

Since a3(0)=ky (0)kz(0)>0 and (f)l is the positive minimum solution (eigenvalue) of

eqn (12) in case of Dy = D5 =0, ay@* ~ 0y (@))®;% + 3(@,) >0 (0< @, <d;). This
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leadsto DD, - D2 >0 (0< @) <dy). If @ denotes the positive minimum solution
of D=0, @, is the fundamental frequency in the horizontal vibration of the rigid body
with a mass of E) supported by ky; (@) and a rotational spring with infinite stiffness. In
this vibration, the horizontal spring stiffness attains ky (@,"). If the inequality E,' < @)
were to hold, the fundamental frequency would become smaller in spite of the fact that
both of the spring stiffnesses become larger or remain the same, i.e. kg (@)= kg (dy)
and the rotational spring stiffness = oo > kp(d,). The relation of kH(&)‘,*) 2 kg (@) is
due to the non-increasing characteristic of ky(w). This conclusion contradicts the well-
known characteristic shown in Courant and Hilbert (1953) and hence it has 10 be rejected.
It is therefore concluded that @;" 2@,. Since D} — —eo as @ -0 and @, is the
positive minimum solution of D, =0, the relation of Dy <0(0<@; <@;) holds. The
same proof is also applicable to the rotational' vibration and the relation of
Dy <0(0< @ < d@,) holds.

If ali the interstorey drift components in the fundamental eigenvector have the same
sign and the condition @ < @), is satisfied, Up(@,A) and ©f(@,,A) given by eqn (14)
also have the same sign as the former. In view of the form of eqn (15), this leads to the
conclusion that the conditions that all the interstorey drift components in the fundamental
eigenvector have the same sign and @) < @, are the sufficient conditions for providing
positive storey stiffnesses. It is assured in most cases that the mode derived under these
qualification conditions is certainly the lowest eigenmode. If the correspondence of the
fundamental natural periods of the frequency dependent model and the frequency-
independent model disappears, the responses of both models could exhibit much different

values. Property 1 guarantees this correspondence.

PROCEDURE FOR FINDING THE SEISMIC STIFFNESS DESIGN
FOR FI2 MODELS
A procedure for finding the solution to Problem SDFI is developed in this section.
The feature of this design procedure is to regard the fundamental frequency and funda-

mental eigenvector of a FI1 model as the principal parameters for adjustment of mean
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peak interstorey drifts. Note that iterative calculation of the determinant of the matrix
representing the eigenvalue problem for a FD1 model is required in order to determine the
fundamental frequency @, of the FD1 model the stiffnesses k of which are prescribed. It
is often the case that the s*iffnesses k are assumed at least in the first iteration cycle in a
usual design procedure including design-sensitivity analysis. On the other hand, no such
an iterative calculation is required in the hybrid inverse formulation described in the pre-
vious section where the stiffnesses k are obtained through the closed form solt-ltion for a
set of the specified fundamental frequency @, and specified interstorey drift vector A in
the fundamental eigenvector. Since the storey stiffnesses Kk are functions of @; and A in
problem HIPFI, the mean peak interstorey drifts & jmax 8iven by eqn (9) are also
functions of @, and A so long as only the solution stiffnesses to Problem HIPFI are
employed.

The participation factor for the fundamental mode can be expressed as follows.

— N
y‘”(co,,A)=-5 (17a)

where

f i
N= moUF(EU_I,A)'f Zm,{UF(a_)l,A)+6p(5],A)H£ 4+ ZA]} (17b)
i=1 J=1

2

. f i f

D= myUp(@,,A)? + zm,{UF(a_;],A)+®F(5,,A)H,- + ZAJ} + ¥ 100 (@;,A)?
i=1 j=1 i=0

(17¢c)

The damping ratio for the fundamental mode given by eqn (8) is also a function of @,
and A in the hybrid inverse formulation. It is therefore denoted by h(@;, A).

The procedure for finding the solution to Problem SDFI is shown in Fig.3 where
the superscripts c1, ¢2 denote the number of iteration cycles. Note that an initial
fundamental frequency @' = 27/7;! of a FI1 model can be found by the following
equation by specifying an initial set of interstorey drift components in the fundamental

cigenvectorby A ' =§,/8) (j=1,--, f) and assuming that the mean peak interstorey
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Specify an initial set A°!
bYAjd -_—gjlgl
) 2
Find an initial &, !

by egn (18)
Compute k! = ky (@), Ex"! =kp(@,")
h = (@), 65" = cp @)
L 4
Obtain {£;°'} of FI1 model with

D,“! and A by eqn (15)

. 2
Conduct eigenvalue analysis of FI1 model of Update A;(j =1, f) by
design {k;°'} and compute {5} '} by eqn (9) A2 =A; (5 /8 max?)
Y A

Find @;°? and {k;?} satisfying 81 max" =6,
regarding @, as the parameter
4

Compute {§; ...} of FI2 model of design {k;2)

End

Fig.3 Flowchart for finding the seismic-drift constrained design
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drift in the first storey can be expressed by the fundamental-mode component alone in the

SRSS estimate,
,r(l)(alcl,Acl)SD(T_'iC];h(l)(c—!"]cl’Acl)) ___g] (18)

Higher mode effects are taken into account in the refinement of the lowest-mode
component by A fz =A j"(g 18 jmu"z). H the participation of higher modes is large,
the corresponding lowest-mode component is suppressed by this refinement equation.
This procedure provides an efficient algorithm with rapid convergence. This property
results from the fact that the fundamental-mode component is predominant in this shear
building and the procedure of utilizing the fundamental frequency and eigenvector as the
principal parameters for adjustment of mean peak interstorey drifts is employed here.

Even if the FI1 model of design {k;'} obtained in the fourth step in Fig.3 has @,
as the fundamental frequency, the FD1 model of design {k j"'} does not necessarily have
it as the fundamental frequency (Nakamura and Takewaki (1989a)). In the case where
both of ky(w) and kg(w) are single-valued non-increasing positive functions of
frequency, it can be proved that both models have the same set of the fundamental
frequency and the fundamental eigenvector (Nakamura and Takewaki (1989a)). This
characteristic guarantees good accuracy of prediction of the seismic drift of a FD2 model
by means of a FI2 model so far as the fundamental-mode component is dominant in the
SRSS estimate of the seismic drift.

Although there is a limitation in this paper that spring stiffnesses have to satisfy the
condition of single-valued non-increasing positive functions of frequency, the procedure
described above may be applicable to the case where not both of k(@) and kg(w) are
single-valued non-increasing positive functions of frequency. However, it is required to
confirm the correspondence of fundamental frequencies of a FI1 model and a FD1 model.

If such a correspondence does not exist, a different procedure should be devised.
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EXAMPLES OF SEISMIC STIFFNESS DESIGN

Examples of seismic stiffness design for ten- and twenty-storey shear buildings are
presented which are calculated for Problem SDFI using the design procedure described in
the previous section. As described before, the shear building obtained is to be adopted as
an approximate solution to Problem SDFD later. |

Floor masses, moments of inertia of floor masses and storey heights are assumed
to be m0=720(x103kg) my=...=me=240(x10%kg), Ipg=2.4x107(kg-m2), I;=... =lp=
8.0x107 (kg-m?2), fri=...=h;=3.50(m). A rigid square base mat of 20(m)x20(m) is
assumed to be on a semi-infinite elastic ground. The complex spring constants of the
base mat are evaluated by an approximate formula due to Veletsos and Verbic (1974) for

a circular base mat of radius r,=11.28(m) with the same area.

SGF' ar, ar,
=__0 —0 1
KH((D) kH(U))'FlaxH(m) [K“[ ‘/S J'l'l ‘/S C ( VS J] ( 93.)

3
Kp(@) = k(@) + itcp(@) = 3’::3"’V)[K (“" )+1?SC22(0‘2 )] (19b)
- S

where G, Vs and v denote the elastic shear modulus, the velocity of shear wave and
Poisson’s ratio of soil, respectively. K;(), K35( ), Cy;() and Cy,( ) are non-dimen-
sional quantities of which approximate expressions have been proposed by Veletsos and
Verbic (1974). In this paper those expressions are adopted. Although the complex
spring constants due to Veletsos and Verbic (1974) are utilized here as a simple example,
more rigorous expressions may be used..

A site-dependent response spectrum (Mostaghel and Ahmadi (1979)) is adopted as
the design response spectrum. The soil with the predominant period T =0.4(s) (shear
wave velocity Vg=200(m/s)) is considered here. The density and Poisson's ratio of the
soil are assumed to be p=1800(kg/m3) and v=1/3, respectively. In this case, K;; and
C), in eqn (19a) are frequency-independent and K| ,=1.0, C,,=0.65 are employed here.
On the other hand, X, and Cj;, in eqn (19b) are frequency-dependent. The plots of the

functions K, and C;; with respect to dimensionless frequency are shown in Figs. 4(a)
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and 4(b), respectively. The maximum acceleration at the free ground surface level is to
have the value of 0.205(g) where g denotes acceleration of gravity. The damping ratio
for the fundamental mode of each shear building designed for three interstorey drift levels
stated afterwards with a fixed base is 0.02. All modes are taken into account in the SRSS
estimate, i.e. Np=f2.

Since the seismic interstorey drifts in few storeys near the topmost and the lowest
are often suppressed so as to attain smaller values than those in middle storeys in the
usual structural design practice, the following specification of mean peak interstorey

drifts is employed here, i.e. §; =---=8;_;=8, § =0.758, §; =0.55 and

bsfnf3]} sl

J

_ _ N2 - _ 1\2

65 = 6{1—0.5(;) } 8¢ p= {1—0.5(5) }
Three different levels of the mean peak interstorey drift & in the middle storeys are speci-
fied so as to attain 0.75, 1.0, 1.5(x10-2m).

Solid lines in Fig.5 show the storey stiffnesses of ten- and twenty-storey shear
buildings designed with the present method for these three specified distributions of mean
peak interstorey drifts. The storey stiffnesses of shear buildings with fixed bases
designed with the method due to Nakamura and Yamane (1986) for the same
distributions of mean peak interstorey drifts are also shown in Fig.5 by dashed lines.
The fundamental natural periods of the designed shear building models (interaction
models) are 0.781, 1.01 and 1.49(s) for the ten-storey buildings with 6=0.75, 1.0, 1.5
(x10-2m), respectively, and 1.57, 2.06 and 3.04(s) for the twenty-storey buildings with
8=0.75, 1.0, 1.5(x10-2m), respectively. The fundamental natural periods of the shear
building models with fixed bases are 0.758, 0.991 and 1.47(s) for the ten-storey
buildings with 5=0.75, 1.0, 1.5(x10-2m), respectively, and 1.52, 2.02 and 3.02(s) for
the twenty-storey buildings with §=0.75, 1.0, 1.5(x10-2m), fespectively. It can be

observed from Fig.5 that the shear buildings with fixed bases require greater storey
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stiffnesses than those supported by complex springs exhibiting the same distribution of

mean peak interstorey drifts.

VERIFICATION BY RESPONSE ANALYSIS ON FI2 MODE-LS

Time-history response analysis has been performed first on FI2 models to demon-
strate the validity of the present design method developed for Problem SDFI and to exam-
ine its accuracy. Twenty artificiat ground motions compatible with the design response
spectrum have been generated (see Appendix 2). It has been assured that increase of the
number of ground motions over twenty does not affect much the response statistics. FI2
models designed for §=0.75, 1.0, 1.5(x10-2m) by means of the present design method
have been subjected to these artificial ground motions. The damping matrix Cj of the
shear building has been ottained by specifying the damping ratio 0.02 for the
fundamental mode of the shear building with a fixed base. Numerical integration has
been performed in matrix form by means of the Newmark-p method with a constant
acceleration scheme to maintain the non-classical damping characteristics. The interval of
0.01(s) has been adopted for each time step. The accuracy of this program of time-
history response analysis has been investigated through the comparison with that of the
response analysis in the frequency domain. It has been assured that the peak interstorey
drift in every storey due to the present response analysis program coincides with that due
to the program utilizing the frequency-domain analysis within the accuracy of 1%. This
result indicates the validity of both the response analysis program in the time domain and
that in the frequency domain.

Figure 6(a) shows the mean values and mean + one standard deviation lines of peak
interstorey drifts of the ten-storey shear building (FI2 model) designed for §=1.0
(x10-2m) subjected to twenty artificial ground motions. Figure 6(a) indicates that the
mean peak interstorey drifts of the ten-storey shear building (FI2 model) are within +5%
lines of the specified values. The result for the twenty-storey shear building is shown in

Fig.6(b). It can be observed from Fig.6(b) that the mean peak interstorey drifts of the
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twenty-storey shear building (FI2 model}) are mostly within £10% lines of the specified
values.

In order to investigate the effect of off-diagonal terms appearing in the modal de-
composition on the total response, additional time-history response analysis has been
performed where a FI2 model is employed and those off-diagonal terms are ignored. It
has been observed that the deviations of the mean peak interstorey drifts obtained by this
time-history response analysis from those shown in Fig.6 are almost within 2% of the
latter. The degree of compatibility of the mean response spectrum of twenty artificial
ground motions with the design response spectrum has then been evaluated. It has been
found that the deviations of the former corresponding to the fundamental frequency from
the latter are within 2% of the latter and that the effects of these deviations on the total re-
sponse are 3% at most. It can be inferred from these facts that the principal factor caus-
ing those deviations shown in Fig.6(b) is the inaccuracy of the SRSS method for the
elastically supported shear building model where modal decomgosition is achieved ex-
actly for a FI2 model by ignoring off-diagonal terms appearing in the modal decomposi-
tion. It should be remarked that the SRSS method can be justified only when the follow-
ing basic assumptions are satisfied (Der Kiureghian (1980)), i.e. (1) the ground motion
under consideration is a stationary Gaussian process with a wide-band power spectral
density, (ii) the response of the structure is a stationary process and (iii) modes are well
separated. In order to investigate the effect of the second assumption of stationary
process, another set of twenty artificial ground motions have been generated where only
the interval of strong phase has been changed from 19(sec) to 38(sec). It has been
observed from the time-history response analysis to this set of twenty artificial ground
motions that the maximum deviation of the mean peak interstorey drifts of the twenty--

storey shear building designed for 3 =1.0(x10-2m) has been reduced from 11% to 7%.

VERIFICATION BY RESPONSE ANALYSIS ON FD2 MODELS
Response analysis in the frequency domain has been performed to demonstrate the

validity of the present design method for Problem SDFD and to examine its accuracy.
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The shear buildings designed for §=1.0(x10-2m) by means of the present design
method using FI2 models have been supported by frequency-dependent complex springs
and have been subjected to the same set of artificial ground motions as described above
(strong motion duration=19(sec)). The Fourier transforms of response displacements

can be calculated from eqn (3) as

U(@) = K p(k) + K p(ky (0). kg (@) + i{Cp + Cplcy (@), cx(@)) ) — 0*M] ™! MrU,(w)
' (20)
The corresponding time-history response u(¢) = {u (t)---uf(t) up(t) Op(t)}r may be

obtained by the Fourier inverse transformation of eqn (20).

1 oo .
u(t)= EJ‘;‘[‘"" U(w)exp(iar)dw {21)

Computation of 0g(m) in eqn (20) and w(?) in eqn (21) can be performed by using FFT
(Lin, and Fagel (1971), Fagel and Liu (1972), Liu and Fagel (1973)). Nyquist frequency
has been chosen as 50(Hz) for all the cases.

Figure 7(a) shows the mean values and mean + one standard deviation lines of peak
interstorey drifts of the ten-storey shear building (FD2 model) designed for §=1.0
(x10-2m) subjected to twenty artificial ground motions. The result for the twenty-storey
shear building is shown in Fig.7(b). It can be observed from Fig.7 that the plots of the
mean peak interstorey drifts are mostly within £10% lines of the specified mean peak in-
terstorey drifts. Furthermore, it can be observed from Figs. 6 and 7 that the distribution
of the mean peak interstorey drifts of the FD2 model indicates almost the same distribu-
tion as that of the FI2 model.

In order to investigate the validity of utilizing a FI2 model for estimating the seismic
response of a FD2 model from another point of view, transfer functions of 1st, 5th and
10th interstorey drifts are plotted in Fig.8 for the ten-storey shear building (FI2 model)
and that (FD2 model) designed for & =1.0(x10-2m). A similar approach can be found in
Wu and Smith (1995). The transfer function indicates the ratio of the interstorey drift to

the free-field ground acceleration in the frequency domain. I can be observed from Fig.8
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that there does not exist a significant difference between these two models. Almost the
same characteristics have been observed from the result for the twenty-storey shear
building designed for & =1.0(x10-2m). Figure 8 indicates that the FI2 model is a good
model for estimating the seismic drift of the FD2 model from the point of view of charac-
teristics in the frequency domain. Contributions from higher modes can also be observed
from Fig.8 and it can be understood that their effects are small in ten-storey buildings
except few storeys near the top.

It is interesting to note in view of Figs. 4(a) and (b) that the FI2 model is defined S0
that rotational spring stiffnesses corresponding to higher natural frequencies are overes-
timated compared to the original model and -otational damping coefficients corresponding
to higher natural frequencies are underestimated in this case. This fact guarantees good
accuracy of estimation of the earthquake response of the FD2 model through that of the
FI2 model together with the fact that spring stiffnesses and damping coefficients of both
models corresponding to the fundamental natural frequency just coincide. It may be
concluded from Figs. 6, 7 and 8 that the accuracy of this design method depends mainly
on the accuracy of prediction of the mean peak seismic drift of a FI2 model.

CONCLUSIONS

A direct method of seismic stiffness design has been developed for finding the set
of storey stiffnesses of the shear building, supported by frequency-dependent complex
springs, which exhibits a specified distribution of mean peak interstorey drifts to a set of
design-spectrum compatible earthquakes.

The seismic drift of the shear building model (FD model) supported by frequency-
dependent complex springs has been estimated approximately through that of a shear
building model (FI model) supported by the corresponding frequency-independent com-
plex springs. It has been shown that this fairly good correspondence of seismic drifts
between these two models is guaranteed by the theorems (Nakamura and Takewaki
(1989a)), As an approximate solution to the problem of seismic stiffness design of a FD

model, the seismic stiffness design of the FI model has been employed. A closed form
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solution to a hybrid inverse eigenmode problem has been derived and the qualification
conditions on the specified fundamental frequency and eigenvector have been disclosed
for providing positive storey stiffnesses. The formula has then been shown to be useful
for developing the direct and efficient method of seismic stiffness design of the FI model.
It has been pointed out that a fundamental frequency and a fundamental eigenvector can
play a role of the principal parameters for adjustment of mean peak seismic drifts in the
design procedure and that a rapidly convergent algorithm can be devised due to the
predominant role of the lowest eigenvibration.

Response analysis on the original model in the frequency domain has been per-
formed only for evaluating accuracy of this design method. It has been disclosed that the
shear building designed with the present design method exhibits the specified distribution
of mean peak interstorey drifts within a reasonable accuracy.

It may be concluded from these results that this paper has indeed enabled one to
find without design-sensitivity analysis nor parametric analysis a set of storey stiffnesses
of the FD model which exhibits a specified distribution of mean peak interstorey drifts to
design earthquakes within a reasonable accuracy. It is expected that this paper plays a
role for providing a guideline for developing a direct design method for more realistic
structure-foundation systems (see, for example, Todorovska and Trifunac (1992),

Todorovska (1993)).
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Appendix 1: Design response spectrum

The velocity response spectrum S\(T, h) (Mostaghel and Ahmadi (1979)) is

expressed as follows.

T<Ti: SUTih) = iigmg “zTE
T/OST STJ3: SUT h) =iignae N L
T.<T <Ts Sy (T: 1:):%%&8,,,(“1\' V{1 - ¢ -100n}

34ST <Ta: Sy (Tih) =T iigyp N L

2 (Ala-d)

where T, h, T, and égmq denote a natural period, a damping ratio, the predominant pe-
riod of soil and the maximum value of ground acceleration, respectively, and T}, T, Ty
N, & indicate the following quantities; 7; =0.03(s), Ty = a number greater than 60(s), T,
=4/T,, N = (142h W(k /h), & =0.20,

Linear interpolation is employed in the regions of T; <T<T_ /10, T,/3<T< T,

and T, < T <37, with respect to double logarithmic axes (logT, logSUT; h)).

Appendix 2: Generation of artificial earthquake ground motions
Twenty artificial ground motions have been generated by using SIMQKE program
(Gasparini and Vanmarcke (1976)). The target spectrum has been chosen from the

velocity response spectrum with damping ratio of 0.02. The control points of the target

spectra are as follows. (7T(s), § w(m/s))=(0.03, 0.00960), (0.04, 0.0421), (0.133, 0.14),
(0.40, 0.391), (10.0, 0.391).
The following envelope function has been employed.
§(r)=0.205g (2/3)2  (0<1<3)
C(t)=0205g (3<1<22)
C(t) = 0.205g - exp[ -0.24 (¢- 22)] (22<1<34.5) (A2a<)
The duration of each artificial ground motion is 34.5(s) and uniform random numbers

have been adopted for the characteristics of phase angles.





