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ABSTRACT 

 The health assessment of existing infrastructure just after an earthquake is a very important but 

challenging task. Even engineered structures can suffer significant damage(s) due to seismic excitations. 

To ensure public safety and to maintain the economic activities of the surrounding communities, 

structural health needs to be assessed promptly following an earthquake. Two novel structural health 

assessment procedures are under development at the University of Arizona. They are known as the 

modified iterative least-squares with unknown input (MILS-UI) and generalized iterative least-squares 

extended Kalman filter with unknown input (GILS-EKF-UI) techniques. These procedures are finite-

element based time domain system identification (SI) techniques, which are capable of identifying 

structures at the element level by using only the dynamic response information. These procedures have 

been extensively verified by using the numerically simulated and laboratory measured response 

information, as obtained for the defect-free and defective frames under sinusoidal and impulsive 

excitations. The health assessment of the same defect-free and defective frames by using the numerically 

simulated response information under seismic excitations is presented here. 

KEYWORDS: Earthquake Ground Motion, Finite Element, System Identification, Structural Health 

Assessment 

INTRODUCTION 

 The health assessment of an engineered civil infrastructure just after strong earthquakes is very 

important for quickly developing post-disaster mitigation plans in the most economical way, without 

exposing the public to excessive risk. The mitigation plans may include opening them to public with or 

without some restrictions of their uses, inspecting them more frequently, repairing the identified defective 

members, or of replacing the whole structure. As recommended in many standards and practiced widely, 

visual inspections are primarily used to assess structural health and to develop the remedial actions as 

necessary. However, a visual inspection does not consider structural performance at the current 

deteriorated state. Thus, it cannot provide a quantitative assessment of the structural health. This 

deficiency reduces its effectiveness to assess structural health in many different ways, including the 

importance of a member in the overall structural integrity, redundancy in the load transfer path, load 

carrying capacity of the member during the ground excitations, lack of accessibility to inspect the member 

or the defects that may be hidden behind the obstructions, and the prior history of damage that might have 

been caused during the installation and/or due to the accidental loads. Also, visual inspections may 

require an excessive amount of resources in some cases, for example, in inspecting a bridge over a river. 

 Damages that change structural behaviour may not always be visible with the naked eye. During the 

1994 Northridge earthquake, welds got fractured in the moment-resisting steel frames. Similarly, welds 

got fractured during the 1989 Loma Prieta earthquake, but those remained undetected for a long period, 

thus exposing the users of these buildings to an additional risk. If the locations of defective spots are 

known, we have technological sophistication to inspect them, when we use localized experimental 

techniques, such as acoustic, ultrasonic, magnetic-field, radio-graphs, eddy-current, thermal-field 

methods. These techniques can also be used to inspect different types of structures, including the marine 

offshore structures, aerospace structures, etc. However, they may not be appropriate to inspect a complex 

civil infrastructure consisting of high-rise buildings, long-span bridges with complex arrangements, 

industrial structures, etc., since the locations of defects are unknown in such cases. An objective 

nondestructive procedure is therefore urgently needed for the rapid assessment of structural health. 
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 Numerous damage detection philosophies have been developed during the last three decades. They 

are effectively summarized in several state-of-the-art papers (Lew et al., 1991; Ghanem and Shinozuka, 

1995; Shinozuka and Ghanem, 1995; Doebling et al., 1996; Housner et al., 1997; Humar et al., 2006; 

Kerschen et al., 2006; Worden et al., 2007; Worden et al., 2008; Ahmed, 2009). Due to its many 

advantages, structural health assessment (SHA) using dynamic response information has recently become 

very popular in the research community. Its basic philosophy is based on the concept that the damage(s) 

that cause changes in the structural dynamical behaviour or responses can be characterized by using an 

inverse identification procedure, known as the system identification (SI) technique. There are three basic 

components in a vibration-based SI technique, namely, (i) input time-varying loading or excitation,       

(ii) the system that needs to be identified, assuming that it can be represented by a series of equations in 

terms of its parameters, such as mass, stiffness and damping properties, and (iii) the output structural 

dynamic responses measured by the sensors. The main objective here is to obtain information on the 

system parameters by using only the output dynamic responses. The information on the input excitation 

may or may not be necessary. Many vibration-based SI procedures have already been developed; their 

relative merits and demerits are available in the literature (Wang and Haldar, 1994). 

 When the dynamic responses of a system are employed for parameter identification, the response 

information can be processed either in the frequency domain or in the time domain. In general, the 

frequency-domain procedures are relatively simpler and have, therefore, been widely used in the past. 

They can assess structural health in the global sense, i.e., they can answer whether the structure is 

defective or not, but they cannot identify the location or the severity of defects. This prompted the 

researchers, including the authors and their research team, to detect defects at the local element level by 

using different time-domain numerical procedures, including the recursive techniques, maximum 

likelihood techniques, etc. In any case, SHA can be broadly conducted at four different Levls (Rytter, 

1993), namely, Level 1 consisting of the determination of the presence of damage in a structure, Level 2 

consisting of the determination of geometric location of the damage, Level 3 consisting of the 

quantification of the severity of the damage, and Level 4 consisting of the prediction of the remaining 

service life of the structure. Levels 1, 2 and 3 are specifically addressed in this paper. In general, the 

procedure used should be simple, inexpensive, and easy-to-implement for a quick SHA. 

 Two novel structural health assessment procedures are under active development by a research team 

at the University of Arizona, which will satisfy the first three levels of SHA. They are finite-element 

based time-domain SI techniques, which can assess the health of structures at the element level by using 

only the noise-contaminated dynamic response information and without using any information on the 

input excitation, thus increasing the implementation potential of these techniques. These procedures are 

conceptually based on the minimization of errors in the identified parameters. A least-squares based 

procedure, called as the iterative least-squares with unknown input (ILS-UI) method, was initially 

developed by Wang and Haldar (1994) for the situation when dynamic response information is available 

at all the dynamic degrees of freedom (DDOFs). They considered viscous damping in the governing 

equations of motion and identified damping for all the members in a structure. Since the changes in 

damping caused by different levels of defects are not known clearly at present, and to improve the 

efficiency of the algorithm, a Rayleigh-type (i.e., mass- as well as stiffness-proportional) damping instead 

of viscous damping can be used without compromising the damage detection capability. This is called as 

the modified iterative least-squares (MILS-UI) method (Ling and Haldar, 2004; Katkhuda et al., 2005).  

For a structure consisting of m  structural elements, the ILS-UI procedure will identify m  damping 

parameters, but these parameters will be only two if the MILS-UI method is used. The MILS-UI method 

significantly improves the efficiency of the algorithm, particularly for the large structural systems. Since 

the response information may not be available at all the DDOFs, particularly for the large real structures, 

later Wang and Haldar (1997) successfully exploited the ability of the extended Kalman filter (EKF) 

technique to identify a structure by using the minimum response information, developed a new technique 

by combining EKF with the ILS-UI method, and called it as the ILS-EKF-UI method. Several 

improvements were incorporated later into this method to increase its computational efficiency and to 

make it applicable for the health assessment of real structures. This is now known as the generalized 

iterative least-squares extended Kalman filter with unknown input (GILS-EKF-UI) method (Katkhuda 

and Haldar, 2008; Haldar, 2009). It is necessary to emphasize that the EKF-based procedures have been 

used over the years for structural identification by using their standard form (Hoshiya and Saito, 1984; 

Koh et al., 1991; Hoshiya and Sutoh, 1993; Oreta and Tanabe, 1993, 1994; Maruyama and Hoshiya, 

2001; Corigliano and Mariani, 2004; Ghanem and Ferro, 2006; Wu and Smyth, 2007). Recently, a few 
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slightly varied forms of the EKF method (Yang et al., 2006, 2007; Ghosh et al., 2007; Zhou et al., 2008; 

Saha and Roy, 2009) have also been used for SHA. The proposed GILS-EKF-UI procedure uses the 

standard EKF form for SHA by using the minimum response information. 

 The ILS-UI and MILS-UI procedures were extensively verified by using the numerically simulated 

response information for the fixed-ended and simply-supported one-dimensional beams (Vo and Haldar, 

2004). In this approach, the computer-generated response information was used to identify the defect-free 

and defective beams excited by the sinusoidal loading. After the completion of this phase, the health of 

the beams was successfully assessed by using the experimental responses obtained in a laboratory (Vo 

and Haldar, 2008a, 2008b). After the verification of the ILS-UI and MILS-UI methods for one-

dimensional beams, this study was extended to identify the health of a two-dimensional frame. As will be 

discussed in more detail later, the responses of steel frame to sinusoidal and impulsive loadings were 

numerically simulated by using a commercially available computer program. Defects of several types 

were then introduced in the frame. The MILS-UI and GILS-EKF-UI methods were verified by using the 

analytical response information (Katkhuda, 2004; Katkhuda et al., 2005; Katkhuda and Haldar, 2006; 

Haldar and Das, 2010), as obtained for the health assessment of the undamaged and damaged 

configurations. A one-third scale model of the frame was then built and the health assessment capabilities 

of the two methods were studied by conducting extensive laboratory investigations for the sinusoidal and 

impulsive loadings applied at the super-structure. By using the so-obtained experimental response 

information, the health of the frame was assessed for its undamaged and damaged configurations 

(Martinez-Flores, 2005; Martinez-Flores and Haldar, 2007; Martinez-Flores et al., 2008; Haldar et al., 

2008). Since it was not possible in our laboratory to excite the frame by a seismic loading applied at its 

base, this paper mainly focuses on the theoretical verification of both methods by using the numerically 

simulated responses of the frame under a seismic excitation and on the confirmation of the observations 

already made during the laboratory investigations with other types of loadings. The responses are 

numerically simulated by using the commercially available ANSYS software. For the ease of 

presentation, the theoretical concepts behind the MILS-UI and GILS-EKF-UI methods are briefly 

discussed below. 

MATHEMATICAL CONCEPT OF MILS-UI PROCEDURE 

 The governing differential equations of motion of a linear multi-degree-of-freedom system under an 

earthquake excitation can be written in matrix notation as 

                     gM t C t Kx x u tx t M I       (1) 

where  M  is the global mass matrix,  C  is the viscous damping matrix,  K  is the global stiffness 

matrix,  I  is the unit vector, and   gu t  is the ground-acceleration time-history vector. As discussed 

earlier, in the MILS-UI method, the damping is considered to be (mass- and stiffness-proportional) 

Rayleigh damping and therefore it can be represented as     M K  , where   and   are the 

Rayleigh damping coefficients, and   x t ,   tx  and   x t  are the vectors containing the dynamic 

responses in terms of acceleration, velocity and displacement, respectively, relative to the base at the time 

t. The global mass and stiffness matrices can be formed by using the standard finite element procedure. 

As in the other SI methods, the mass matrix  M  is assumed to be known. Since it is impractical to know 

the exact time history of the earthquake ground acceleration soon after the excitation, it is considered to 

be unknown. The parameters to be identified are the stiffness parameters in  K  and the damping 

coefficients,   and  . To this end, Equation (1) can be reorganized as 

      
1 1

( ) = ( )
nm h h nm

A t D F t
  

 (2) 

For the over-determined system represented by Equation (2),  A t    is a rectangular matrix with the 

number of rows, nm, greater than the number of columns, h, and is populated with the responses at all the 

DDOFs in terms of displacement vector   x t  and velocity vector   tx  at the time t;  D  is a 



14 Health Assessment of Structures Exposed to Seismic Excitations 

 

 

vector composed of the unknown system parameters (i.e., the stiffness and damping coefficients) to be 

identified;  ( )F t  is a vector composed of the unknown input ground excitation and the inertia forces at 

the time t; h is the total number of unknown parameters to be identified; nm  is equal to n m ; n is the 

total number of DDOFs; and m is the total number of the time points of the response measurements. 

 The system parameter vector  D  in Equation (2) can be defined as 

    
T

1 2 1 21
, , ...,  , , , ...,  , ne neh

D k k k k k k   

  (3) 

where h is equal to 2 1ne  ; ne is the total number of finite elements; ik  is the stiffness parameter of the 

ith element and is defined as ,i i iE I L  where iL  and iI  are respectively the length and the second 

moment of inertia of the cross-section of the member, and iE  is the Young’s modulus of elasticity of the 

material. To solve for  ,D  the least-square technique is used to minimize the total error Er in the 

identification of the structure, i.e., 

 

2

1 1

( ) ; 1,2, ,
n m h

r rs s

r s

Er F A t D r n m


 

 
    

 
    (4) 

To minimize the total error, Equation (4) is differentiated with respect to each one of the iD  parameters 

as 

 
1 1

0; 1,2, ,
n m h

r rs s ri

r si

Er
F A D A i h

D



 

  
    

  
    (5) 

Equation (5) gives h simultaneous equations, the solution of which will give the estimation of all the h 

unknown parameters. The unknown parameters can be evaluated as 

      
1

T T

× ×1 ×1
[ ] [ ] [ ]h nm nm h h nmh nm

D A A A F



  (6) 

 The system parameter vector  D  can be solved, provided the force vector   F t  and matrix 

 A t    are known. However, since the input ground excitation is not known, the force vector   F t  in 

Equation (2) becomes an unknown. The MILS-UI method solves for the vector  D  by starting an 

iterative process, where the unknown input seismic excitation is assumed to be zero at all time points 

(Katkhuda et al., 2005). This assumption guarantees a non-singular solution of Equation (2), without 

compromising the convergence or the accuracy of the method. It is observed that the method is not 

sensitive to this initial assumption. It may be emphasized that the fully populated square matrix    
T

A A  

has full rank and does have an inverse. In Equation (6),  
1

T T[ ] [ ] [ ]A A A


 is called as the pseudo inverse 

of matrix  .A  

 The major drawback of the MILS-UI procedure is that it requires responses to be observed at all 

DDOFs. This may not be possible for large structures with numerous DDOFs. Also, the presence of noise 

in the measured responses is not explicitly addressed by the MILS-UI method. To increase the 

implementation potential of this method, so that it is able to identify large complicated structural systems, 

the GILS-EKF-UI method is proposed below. 

MATHEMATICAL CONCEPT OF GILS-EKF-UI PROCEDURE 

 The basic objective of the GILS-EKF-UI method is to identify large structural systems by using only 

the noise-contaminated response measured at a small part of the structure. This will be discussed in more 

detail in the section on verification, for the situation when the health of a two-dimensional frame shown in 

Figure 1 needs to be assessed. The finite-element representation of the frame is shown in Figure 2(a). 

Responses are measured only at a small part of the frame, denoted hereafter as the substructure and shown 
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in Figure 2(b). The substructure consists of three nodes, i.e., Nodes 1, 2, and 3, and two elements, i.e., 

Beam 1 and Column 4. Our task is to identify the whole frame by using the responses measured at the 

three nodes. It will be shown that the GILS-EKF-UI method can be used for this purpose. It may be 

pointed out that in a real inspection accelerometers are used to measure the responses. The required 

information on velocity and displacement time histories is then obtained by successively integrating the 

measured acceleration time histories (Vo and Haldar, 2003). The issues related to noise-contaminated 

acceleration time histories have been discussed by Vo and Haldar (2003). 

 

Fig. 1  Three-story experimental frame 

 The Kalman filter (KF)-based methodologies (Jazwinski, 1970; Maybeck, 1979; Welch and Bishop, 

1995) can be used if response information is not available at all the DDOFs; however, in order to 

implement these methodologies, the information on input excitation and the initial state vector must be 

available. The extended Kalman filter method with weighted global iteration (EKF-WGI) proposed by 

Hoshiya and Saito (1984) also requires similar information; however, it can only identify mildly nonlinear 

systems. In any case, with the requirements of additional information, the basic KF-based formulation 

will not satisfy the main objective of this study. To circumvent this situation, the desirable features of the 

MILS-UI and EKF metods are integrated and a two-stage approach is proposed, leading to the 

development of the GILS-EKF-UI method. In Stage 1, based on the available response information, a 

substructure is considered that will satisfy all the requirements of the MILS-UI method. At the 

completion of Stage 1, the time history of the unknown excitation force, the Rayleigh-damping 

coefficients, and the stiffness parameters of all the elements in the substructure will be available. The 

information obtained on damping will be applicable to the whole structure. Further, the stiffness 

parameters identified for the substructure can be judiciously used to develop the initial state vector of the 

stiffness parameters for the whole structure. The generated information will thus satisfy all the 

requirements to implement the EKF-based concept, and therefore in Stage 2, the whole structure can be 

identified by using only a limited noise-contaminated response information. 

 The location and size of substructure are to be selected based on the available measured responses. 

For economic reasons, the size of substructure should be kept to a minimum. The past maintenance 

history of the structure being inspected or the experience of inspectors in dealing with a particular type of 

structure may also help in selecting the location of the substructure appropriately. However, the defect 

predictability of the method improves significantly, if the substructure is located close to the defect. 

Multiple substructures at different locations are expected to work better, since at least one of them is 

likely to be close to the location of defect. As in all engineering problems, engineering judgment is 

expected to improve the damage predictability of the method. Although for a class of problems, 

substructuring can be automated, but this option is not considered while developing a general-purpose 

procedure. 
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(a) 

 

(b) 

Fig. 2  (a) Finite-element representation of the experimental frame; (b) Substructure for the 

GILS-EKF-UI method 

 In order to apply the GILS-EKF-UI method, the state vector can be defined as 

  

 

 

 

 

 

 

1

2

3

( )( )

( ) ( ) ( )

( )

X tZ t

Z t Z t X t

Z t K

  
    

    
   
    





 (7) 

where   Z t  is the state vector at the time t,   X t  and  ( )X t  are the displacement and velocity 

vectors, respectively, at the time t for the whole structure, and  K  is a vector containing the stiffness 

parameters of the whole structure that needs to be identified. The stiffness parameter for the ith member, 

defined earlier for the MILS-UI method as ,i i i ik E I L  will remain the same. The structural system is 

considered to be time invariant during the identification process; hence, the stiffness parameters 1 2, ,k k   

will remain unchanged during this period. During the updating process, the derivatives of the state vector 

are necessary. For seismic excitation, those can be shown to be 
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 (8) 

 To consider the error in the initial state vector  
0

,tZ  it is considered to be Gaussian with the mean 

vector  
0

ˆ
tZ  and the constant error covariance matrix 

0
,tP 

   and denoted as     
0 0 0

ˆ , .t t tZ N Z P 
   
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To consider uncertainty in the measured responses, the observational vector  
kt

Y  at the time kt  can be 

expressed as 

         
k k kt t k tY H Z t V   (9) 

where  H  is a matrix containing information on the measured responses and  
kt

V  is the observational 

noise vector. The vector  
kt

V  is generally assumed to be Gaussian white noise with zero vector as the 

mean vector and 
kt

R 
   as the covariance matrix, and denoted as     0 , .

k kt tV N R 
   All the other 

parameters are same as defined earlier. 

1. Stage 1 

 The substructure used in this study to identify the whole frame is shown in Figure 2(b). The 

information on the measured response of the frame will satisfy the minimum requirements for 

implementing the MILS-UI method. A successful completion of Stage 1 will produce information on the 

stiffness parameters of the two members, i.e., one beam and one column, the unknown excitation and the 

two Rayleigh damping coefficients. In order to develop the initial state vector of the whole frame, the 

initial stiffness parameters of all the beams in the frame will be assumed to have the same value as 

identified for the beam in the substructure. Similarly, all the columns will be assigned the same stiffness 

parameter as identified for the column in the substructure. With this, the information necessary to 

implement Stage 2 will become available. 

2.  Stage 2 

 With the initial state vector   0 0 0
ˆ /Z t t  having been defined at the completion of Stage 1, Stage 2 is 

initiated with the following steps. 

2.1  Step 1: Define the Initial Covariance Matrix 

 The initial error covariance matrix  0 0/P t t    
contains the information on the errors in the 

measured responses and in the initial estimate of the stiffness parameters of the elements. This is 

generally expressed as (Hoshiya and Saito, 1984; Wang and Haldar, 1997) 

  
   

   

0 0

0 0

0 0

/ 0
/

0 /

x

k

P t t
P t t

P t t

   
    
    

 (10) 

where  0 0/xP t t    is a 2n2n matrix, which contains the initial covariance matrices of displacement and 

velocity and is assumed to have a value of 1.0 in the diagonals, and  0 0/kP t t    is a nene diagonal 

matrix, which contains the initial covariance matrix of  .K  Here, n and ne are the total number of 

DDOFs and the total number of elements in the whole structure, respectively. Hoshiya and Saito (1984) 

pointed out that the diagonals in  0 0/kP t t    should be large positive numbers to accelerate the 

convergence and recommended the value of 1000 for this purpose. 

2.2  Step 2: Prediction Phase 

 In the context of EKF, the predicted state   1
ˆ /k kZ t t  and its error covariance  1 /k kP t t

    
for 

the next time increment is evaluated as 

         
1

1
ˆ ˆ ˆ/ / / , d

k

k

t

k k k k k

t

Z t t Z t t f Z t t  t t



 
 =  (11) 
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and 

          
T

1 1 1
ˆ ˆ/ , ; / • / • , ; /k k k k k k k k k k k kP t t t t Z t t P t t t t Z t t  

                       
 (12) 

where the integral in Equation (11) contains the first derivative of the state vector; 

  1
ˆ, ; /k k k kt t Z t t

  
   

 is the state transfer matrix from the time kt  to 1kt   and can be written in an 

approximate form as 

        1
ˆ ˆ, ; / • ; /k k k k k k kt t Z t t I t F t Z t t

        
         

 (13) 

In this equation,  I  is a unit matrix and 

   
  

     ˆ /

,
ˆ; /

k k k

k k

k k k

j
Z t Z t t

f Z t t
F t Z t t

Z


        
     

 

 (14) 

where jZ  is the jth component of the vector   .kZ t  

2.3  Step 3: Estimation of Kalman Gain 

 The Kalman gain matrix is estimated in the following way: 

 

       

         

T

1 1 1 1 1

1
T

1 1 1 1 1 1

ˆ ˆ; / / • ; /

ˆ ˆ            • ; / • / • ; /

k k k k k k k k

k k k k k k k k k

K t Z t t P t t M t Z t t

M t Z t t P t t M t Z t t R t

    



     

                  

                        

 (15) 

with 

   
   ,

ˆ; /
k k

k k k

j

H Z t t
M t Z t t

Z

 
    

    
 (16) 

2.4  Step 4: Updating Phase 

 Since observations are available at the time 1,kt   the updated state   1 1
ˆ /k kZ t t   

is obtained by 

using the Kalman gain matrix   1 1
ˆ; /k k kK t Z t t 

  
     

and by using the information on the predicted 

state (via Equation (11)) and the observed state as 

                1 1 1 1 1 1 1
ˆ ˆ ˆ ˆ/ / ; / • /k k k k k k k k k kZ t t Z t t K t Z t t Y t H Z t t      

               
 (17) 

The corresponding updated error covariance matrix  1 1/k kP t t 
    

can be shown to be 

 

            

        
  

1 1 1 1 1 1 1

T

1 1 1 1

1 1

ˆ ˆ/ ; / • ; / • /

ˆ ˆ                     • ; / • ; /

ˆ                    ; /

k k k k k k k k k k

k k k k k k

k k k

P t t I K t Z t t M t Z t t P t t

I K t Z t t M t Z t t

K t Z t t

      

   

 

                      

      
         

  
  

    
T

1 1 1
ˆ• • ; /k k k kR t K t Z t t  

          

 (18) 

The prediction and updating will continue for every time increment, i.e., when k is replaced by k+1. The 

process will continue until all the time points are used, i.e., k becomes equal to m, where m represents the 

total number of discrete time points of the measurements. The iteration process covering all the time 

points is generally denoted as local iteration. However, the identified parameters obtained through the 
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local iteration may not be stable and convergent. To obtain the desired results, a weighted global iteration 

procedure, suggested by Hoshiya and Saito (1984), can be used. To accomplish this, a weight factor w is 

introduced in the error covariance matrix for the stiffness parameters to be estimated in Equation (10), 

and the same prediction and updating steps are carried out for all the m time points. Hoshiya and        

Saito (1984) reported that weight factor played an important role to promote convergence, although it 

may lead to fluctuations in the state vector in first few iterations. Hoshiya and Saito (1984), Koh et         

al. (1991), Oreta and Tanabe (1993, 1994) assumed w to be 100. Hoshiya and Sutoh (1993) assumed it to 

be in the range of 1000 to 10000 in some applications. In a more recent work, Ghosh et al. (2007) 

assumed w to be 100. In this study w is considered to be 100 or 1000, depending on the application. 

 The overall process to implement Stage 2 of the GILS-EKF-UI method can be described as follows. 

Stage 2 is initiated by assuming the initial state vector   0 0 0
ˆ /Z t t  and error covariance matrix 

 0 0/ .P t t    At the completion of the local iteration, updated information on the corresponding terms, 

denoted as   (1)ˆ /m mZ t t  and  (1) /m mP t t    respectively, will be available. Here, the superscript (1) 

denotes the first global iteration. To initiate the 2nd global iteration,   (2)

0 0
ˆ /Z t t  and  (2)

0 0/P t t    

need to be assumed, say equal to   (1)ˆ /m mZ t t  and  (1) / ,m mw P t t    
respectively. On the completion 

of this iteration, the information on   (2)ˆ /m mZ t t  and  (2) /m mP t t    will become available. The 

global iteration process will continue, until a predetermined convergence criterion is satisfied for the 

identified structural parameters, i.e.,    ( ) ( 1)/ /i i

m m m mK t t K t t         , where i represents the 

global iteration number and  is the acceptable tolerance level. Since the stiffness parameters in this study 

are of the order of 100000,  is considered to be between 10 and 100. In some cases, convergence may 

not be achieved. In those cases, the minimization of an objective function   will be necessary (Hoshiya 

and Saito, 1984). However, this is beyond the scope of this paper. In any case, after the completion of 

Stage 2, the whole structure is identified by using the response information measured only at the 

substructure. 

EXAMPLE: HEALTH ASSESSMENT OF A 2-D FRAME EXCITED BY EARTHQUAKE 

GROUND MOTION 

 A three-story, single-bay, two-dimensional, steel frame shown in Figure 1 is considered to verify the 

MILS-UI and GILS-EKF-UI methods. The same frame has already been tested in laboratory by exciting it 

with the sinusoidal and impulsive forces (Martinez-Flores, 2005). The health assessments of defect-free 

and defective frames by using experimental response information have also been published for this case 

(Martinez-Flores, 2005; Martinez-Flores and Haldar, 2007; Martinez-Flores et al., 2008). 

 For completeness in this paper, a brief discussion on the example frame is necessary. This frame has 

been designed according to the design guidelines of American Institute of Steel Construction's (AISC's) 

LRFD Manual and scaled to one-third of its actual dimensions to fit the testing facilities. The scaled 

frame has the bay width of 3.05 m and the story height of 1.22 m. The frame consists of nine members, 

i.e., six columns and three beams. The steel section of size S4x7.7 has been used for all the beams and 

columns in order to minimize the effects of fabrication defects and differences in the material 

properties. Assuming that the bases are fixed, the frame can be represented by 18 DDOFs. The nominal 

cross-sectional properties of the chosen section are available from any standard steel manual. However, 

before testing the frame in laboratory, the scenarios considered have been studied analytically in an 

exhaustive manner. The actual values of cross-sectional area, mass, moment of inertia and damping 

properties are expected to be different from the nominal values and are therefore determined first as 

discussed next. 

1.  Estimation of Actual Cross-Sectional Area 

 Martinez-Flores (2005) conducted a simple experiment to establish the actual cross-sectional area of 

the members of the example frame. A test specimen was submerged into a container filled with water, and 
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by using the information on the displaced water, the average cross-sectional area of the specimen 

members was estimated to be 14.14 cm
2
. This is less than 3% of the nominal value, and hence, in 

developing the analytical model the estimated area of 14.14 cm
2
 is considered. 

2.  Estimation of Moment of Inertia 

 A trial and error method is used to calculate the actual moment of inertia of the structural members. 

The defect-free frame was excited by a sinusoidal load and acceleration time history was recorded at the 

top of the frame at Node 2. By using the fast Fourier transform (FFT), the first two natural frequencies 

were estimated to be 1f  = 9.76 Hz and 2f  = 34.12 Hz. A theoretical finite-element model of the frame 

was also developed by considering the area of the elements same as that estimated experimentally. The 

Young’s modulus of elasticity of the material was taken as 123.3×10
9
 N/m

2
. The moment of inertia of the 

elements was changed so that there was matching between the first two natural frequencies of the 

experimental and theoretical models. Reasonably good matching was observed between the experimental 

and theoretical frequencies, when the nominal moment of inertia was reduced by 6%. Therefore, the 

actual moment of inertia is estimated to be 94% of the nominal moment of inertia, i.e., equal to 

0.94253.9 = 238.7 cm
4
. 

3.  Estimation of Mass 

 As mentioned above, all the beams and columns have the same cross-sectional area. Hence, to 

estimate their mass, they are simply weighed and the mass is estimated to be 11.5 kg/m. 

4.  Estimation of Damping 

 The logarithmic decrement method is employed to evaluate the amount of viscous damping present in 

the frame and the damping coefficient  for the frame is estimated based on the rate of decay of the 

oscillatory response of the structure (Clough and Penzien, 1993). The frame was excited by an impulsive 

load and the acceleration time history at the roof at Node 1 was recorded. This time history was then post-

processed and integrated twice to obtain the displacement time history. Assuming damping to be same in 

the first two modes and following the procedure suggested by Clough and Penzien (1993), the 

corresponding (problem-specific) Rayleigh damping coefficients are estimated. 

5.  Generation of Theoretical Responses and Health Assessment of the Frame  

 The actual stiffness values, ,i i i ik E I L  i = 1, 2, , are found to be 96500 N-m for all the beams 

and 241250 N-m for all the columns. To simulate the gravity load, a uniformly distributed load of      

3675 N/m is applied on all the floor beams. The first two natural frequencies of the frame are estimated to 

be 2.0915 and 7.3063 Hz, and the Rayleigh damping coefficients   and   are estimated to be 0.245404 

and 0.000406786, respectively. The analytical responses of the defect-free frame have been evaluated by 

using ANSYS, Version 11, a commercially available computer program, for excitation by the recorded 

acceleration time history of 1994 El Centro earthquake shown in Figure 3. 
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Fig. 3  1994 El Centro earthquake acceleration time history 
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 The displacement, velocity, and acceleration time histories are calculated at each DDOF for the time 

increment of 0.00025 s for a total duration of 3 s. To consider the defective state of the frame, three 

scenarios of this state are considered. For the purpose of discussion and on referring to Figure 2(a), these 

scenarios are (i) Beam 1 is broken, (ii) Beam 2 is broken, and (iii) Beam 3 is broken. To obtain analytical 

responses for these scenarios, the moment of inertia of the broken beams is considered to be 0.1% of that 

in the defect-free state. Again, ANSYS, Version 11 is used to estimate the responses at all DDOFs under 

the same seismic excitation for each scenario. Once the responses have been obtained for both defect-free 

and defective states, those are considered to be the measured responses and the information on input 

seismic excitation is completely ignored for the purpose of structural health assessment. It is important to 

note that the initial finite element representation of the defect-free frame is not changed for the defective 

states. Therefore, the task is whether the MILS-UI and GILS-EKF-UI methods can identify the locations 

and severity of defects. 

6.  Health Assessment of Defect-Free Frame Using the MILS-UI Method 

 Although theoretical responses are available for a longer duration, the responses between 1.52 and 

2.37 s with a sampling interval of 0.01 s are used. While using the responses for all the 18 DDOFs, the 

stiffness parameters for all the nine members of the defect-free frame are identified by using the MILS-UI 

method. The identified stiffness parameters are summarized in Table 1. On comparing the identified 

stiffness parameters with their expected or analytical values, the errors in the identification are found to 

be very small, i.e., of the order of 0.002%, for all the members. Since the stiffness parameters did not 

change among all the members, the frame is identified to be defect-free. This indicates that the MILS-UI 

method accurately identifies the defect-free state of the frame for the seismic excitation considered. 

Table 1: Stiffness Parameter Identification for Defect-Free Frame Using MILS-UI Method 

Member 

i 

Stiffness Parameter ik  ( )
i i i

E I L  Values 

Nominal 

(N-m) 

Identified 

(N-m) 

Error 

(%) 

(1) (2) (3) (4) 

1 96500 96498 −0.002 

2 96500 96498 −0.002 

3 96500 96498 −0.002 

4 241250 241244 −0.002 

5 241250 241244 −0.002 

6 241250 241244 −0.002 

7 241250 241244 −0.002 

8 241250 241244 −0.002 

9 241250 241244 −0.002 

7.  Health Assessment for Defective Frame Using the MILS-UI Method 

 After successfully identifying the defect-free frame, the three scenarios of the defective state of the 

frame are considered one at a time. For a broken member, its stiffness parameter is supposed to be zero, 

with the understanding that it is impractical to obtain a zero value for this parameter numerically. Similar 

to the case of defect-free frame, on using the responses for all the 18 DDOFs between 1.52 and 2.37 s 

with the sampling interval of 0.01 s, the stiffness parameters for all the members are identified for the 

three defective states by using the MILS-UI method. The results of identification are summarized in  

Table 2. 

 For all the three scenarios of the defective state, the identified stiffness parameters for the broken 

members are found to be of the order of 100 N-m, as compared to the value of 96500 N-m for the defect-

free state of the frame. The stiffness parameters for the other members did not change significantly, 

thereby indicating the location of the defect. For the three scenarios of the defective state, it is thus found 

that the MILS-UI method correctly identifies the locations and severity of the defects in the case of 

seismic excitations. 
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Table 2: Stiffness Parameter Identification for Broken Members Using MILS-UI Method 

Member 

i 

Stiffness Parameter ik  ( )
i i i

E I L  Values 

(N-m) 

Nominal 
Identified 

Broken Beam 1 Broken Beam 2 Broken Beam 3 

(1) (2) (3) (4) (5) 

1 96500 100 96588 96571 

2 96500 96560 101 96574 

3 96500 96562 96595 100 

4 241250 241400 241473 241430 

5 241250 241400 241473 241430 

6 241250 241405 241488 241436 

7 241250 241405 241488 241436 

8 241250 241406 241491 241440 

9 241250 241406 241491 241440 

8.  Health Assessment for Defect-Free Frame Using GILS-EKF-UI Method 

 While considering the substructure shown in Figure 2(b) and using only the responses at its 9 

DDOFs, the whole defect-free frame is identified by using the GILS-EKF-UI method. Based on the prior 

experience, the sampling interval is considered to be 0.00025 s to implement the procedure. By using the 

responses between 1.52 and 2.37 s, the substructure of the defect-free frame is first identified and the 

results are shown in Table 3(a). These results indicate that the stiffness parameters of the beam and 

column in the substructure are identified quite accurately in Stage 1. The unknown input ground 

acceleration is also identified accurately, as shown in Figure 4. 

 By using the information generated in Stage 1 (based on the responses at 9 DDOFs), the whole frame 

is identified in Stage 2. The different amounts of noises in the measured responses are considered by 

changing the diagonal terms of the covariance matrix .
kt

R 
   The results corresponding to the diagonal 

values of 10
-2 

and 10
-4

 are summarized in Table 3(b) (see Columns 3 and 4, respectively). As expected, 

the errors in the identification are observed to go up with an increase in the noise level in the responses. 

 It is obvious that the total number of responses used to identify a structure will determine the 

accuracy in the predictions. For seismic excitations, the horizontal responses are expected to control the 

structural behavior and therefore the stiffness parameters are identified again by additionally considering 

the horizontal responses at Nodes 4, 5 and 6 (in addition to the responses at the 9 DDOFs of the 

substructure). The identified stiffness parameters for all the members are given in Table 3(b) (see 

Columns 5 and 6 for the diagonal terms of 10
-2 

and 10
-4

, respectively, in the covariance matrix 
kt

R 
  ). 

The corresponding maximum errors in the stiffness parameter identification are found to be 3.6% and 

3.05%, respectively. This exercise clearly indicates the value of considering additional responses; the cost 

may go up but predictability will be improved. Further, it is observed that the identified stiffness 

parameters do not change significantly from member to member, which indicates that the frame is defect-

free. 

9.  Health Assessment for Defective Frame Using GILS-EKF-UI Method 

 Considering the same three scenarios of the defective state as discussed earlier and the responses 

measured between 1.52 and 2.37 s with the sample interval of 0.00025 s, the frame is identified. It may be 

noted that for the first scenario, the substructure contains the defect. Table 4(a) shows that the identified 

results for Stage 1 are very accurate for all the three scenarios. The results for the identified stiffness 

parameters for the whole frame, as obtained by using the responses at the 12 DDOFs, are shown in      

Table 4(b). In some cases, the identified stiffness parameters for the broken members are observed to be 

negative, and in all cases, they are very small, thus indicating the locations and severity of defects. The 

identified results for the first scenario clearly indicate that the defect has been identified more accurately. 

This observation suggests that the proximity of the defect to the substructure may be an important defect 

identification parameter. This needs to be investigated more extensively. In any case, the locations and 
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severity of the defects in all the three cases have been identified correctly for the seismic excitations also. 

This study thus confirms that the GILS-EKF-UI method is robust and that this can identify structural 

health for different types of excitations. 

Table 3:  Stiffness Parameter Identification for Defect-Free Frame Using GILS-EKF-UI Method: 

(a) Stage 1—Substructure Identification; (b) Stage 2—Identification of Whole Structure 

(a) 

Member  

i 

Stiffness Parameter ik  ( )
i i i

E I L  Values 

Nominal 

(N-m) 

Identified 

(N-m) 

Error  

(%) 

(1) (2) (3) (4) 

1 96500 96498 −0.002 

4 241250 241244 −0.002 

 

(b) 

Member 

i 

Stiffness Parameter ik  ( )
i i i

E I L  Values  

(N-m) 

Nominal 

Identified 
9 DDOFs 12 DDOFs 

Diagonal 

kt
R 
   Value 

= 10
-2

   

Diagonal 

kt
R 
   Value 

= 10
-4

   

Diagonal 

kt
R 
   Value 

= 10
-2

   

Diagonal 

kt
R 
   Value 

= 10
-4

   

(1) (2) (3) (4) (5) (6) 

1 96500 102005 96946 97216 96225 

2 96500 84888 94334 95123 96893 

3 96500 111356 79379 98044 94840 

4 241250 250776 229117 241853 237739 

5 241250 277351 238014 245891 239033 

6 241250 118007 182932 233237 242091 

7 241250 176952 208766 249935 248598 

8 241250 172766 496563 238373 247199 

9 241250 431023 165941 239774 240178 
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Fig. 4  Theoretical and identified seismic excitations 
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Table 4: Stiffness Parameter Identification for Broken Members Using GILS-EKF-UI Method:   

(a) Stage 1—Substructure Identification; (b) Stage 2—Identification of Whole Structure 

(a) 

Member 

i 

Stiffness Parameter ik  ( )
i i i

E I L  Values 

Nominal 

(N-m) 

Broken Beam 1 Broken Beam 2 Broken Beam 3 

Identified 

(N-m) 

Error  

(%) 

Identified 

(N-m) 

Error 

(%) 

Identified 

(N-m) 

Error  

(%) 

(1) (2) (3) (4) (5) (6) (7) (8) 

1 96500 100 −99.896 96498 −0.002 96498 −0.002 

4 241250 241410 0.066 241244 −0.002 241245 −0.002 

 

(b) 

Member  

i 

Stiffness Parameter ik  ( )
i i i

E I L  Values  

(N-m) 

Nominal 

Identified 

Broken Beam 1 Broken Beam 2 Broken Beam 3 

Diagonal  

kt
R 
    

Value  
= 10

-2
 

Diagonal  

kt
R 
    

Value  
= 10

-4
 

Diagonal  

kt
R 
    

Value  
= 10

-2
 

Diagonal  

kt
R 
    

Value  
= 10

-4
 

Diagonal  

kt
R 
    

Value  
= 10

-2
 

Diagonal  

kt
R 
   

Value  
= 10

-4
 

(1) (2) (3) (4) (5) (6) (7) (8) 

1 96500 −66 442 94845 94798 98561 95194 

2 96500 96733 95985 1030 1034 93255 98702 

3 96500 97431 96235 94740 94778 2415 −2104 

4 241250 243439 236935 235530 234816 243379 236311 

5 241250 243945 237021 233756 233889 253192 233666 

6 241250 236679 240039 233788 236803 227883 245882 

7 241250 242972 245101 248438 245556 253281 240446 

8 241250 226651 250292 245453 249306 230783 250677 

9 241250 253244 234827 244920 241031 235759 248391 

CONCLUSIONS 

 Conceptual bases for the two vibration-based structural health assessment procedures, denoted as 

MILS-UI and GILS-EKF-UI methods, under development by the research team at the University of 

Arizona have been presented. Both procedures were analytically and experimentally verified in the past 

for the sinusoidal and impulsive excitations. They have been analytically verified for the seismic 

excitations by using the numerically generated response information in this paper to establish their 

robustness. Both methods are finite-element based and use dynamic response information to identify the 

defective elements. The MILS-UI method is considered to be more appropriate for the SHA of small 

systems. Since the GILS-EKF-UI method can assess structural health by using the responses measured at 

limited locations in the structure, it is considered to be more appropriate for large structural systems. This 

study also indicates that the selection of the location of the substructure is an important parameter to 

identify defects. Hence, for large structural systems, multiple substructures may be necessary. This needs 

to be investigated further. Nevertheless, this study confirms the robustness of both the procedures and 

indicates great implementation potential of these procedures to assess the structural health of real 

structures. 
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