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i CONCENTRATED MASS, SPRING AND DASHPOT
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SYNOPSIS

An approximate analytical method has been given for the determination of natural
frequencies of a composite system consisting of an isotropic rectangular plate with a concen-
_ trated mass, spring and dashpot attached at any point of the plate, the plate being clamped at
all the edges. This method makes use of a double series expansion in ‘terms of the beam
function. Numerical examples are given for a square plate with (a) concentrated mass at the
cgntre‘aﬁd (b) a spring at the centre. This method is applicable to many other edge conditions
and combinations of mass, spring and dashpot. ' ’
Nomenclature | ;
2a, 2b sides of the r'eyctangular plate n
h.. plate thickness - , =
D flexural rigidity of the plate
E  Young's modulus of the plate material
Y Poisson’s ratio
- Kp spring constant of the plate
K. constant of the plate per unit area
o P mass of the plate per unit area
... Mp total massof the plate
concentrated mass
¢ dashpot strength
v  bla ratio
s . exponential decay constant
P circular frequency of the system -
W(x,y,t) deflection of the plate -
Xm, Yo beam functions '
'\ the frequency parameter
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1. Introduction.

In engineering instrumentation or in structural analysis, problems often arise where the
natural frequencies of lateral vibrations of a rectangular plate of appreciable mass which
carries a concentrated mass are important, especially when the attached masses are comparable
In magnitude to the mass of the plate ijtself. Under such circumstances the natural frequencies
of the plate-mass system may be considerably different from those of the plate without masses,
- For a vibrating beam with concentrated mass, spring and dashpot an analytical solution has

been given by Dana Young (1948). This method makes use of a series expansion in terms of
the set of orthogonal functions which Tepresent the normal modes of vibration of the beam
alone. ~ This method is very general in character and may be applied when the beam has any

type of end supports. This method"*has been extended by Das and Navaratna (1963) to

isotropic rectangular plétes with attached mass, spring and dashpot. ‘They have considered a
rectangular plate simply supported along two parallel edges and supported in any manner
along the other two parallel edges. A Fourier series expansion in terms of the corresponding
Plate-cigenfunctions has been utilised to represent the ‘modal form of the plate system, An
independant analysis for the problem of vibration of a plate with attached mass has been given
by Thein Wah (1961 ). Even here the plate is simply supported on two opposite edges.  An
extension of Young’s procedure is possible only for plates treated by the above authors where
the two opposite edges are simply supported. Only in this case a_series expansion in terms
of the plate eigenfunctions is possible. For other types of boundary conditions such an expan-
sion is not possible as the plate eigenfunctions are not known. “This paper'is devoted to an
analytical solution for such plates. R e ‘

A fourier series procedure has been made use of in solving the vibrations of a clamped
rectangular plate with concentrated mass, spring “and d%islipdt:“ It lezfdéjto the:same results
as given by the Galerkin method when the same functions are used. - Thé procedure may be
applied for any combination of clamped and simply supported - edges. WHhen there are free
edges it is not possible to use this method and the Rayleigh-Ritz method may h~ziVe to be used.

2. The equation for the composite system,

i

Let the mass, spring and dashpot be attached to the plate at a point' (x1, y1) (Fig. 1.).

During vibration the plate may be considered to.be under forced vibration due to-the force of

interaction between the plate and the mass-spring-dashpot ;System.. Then the motion of the
plate is described by

D V‘W+P/%~;h=f(x,y) (THtip)t e L D

Where « is the ¢Xponential decay constant and f x,y) e(—"_Hp ) trepresents the force of in-
teraction. o -

PN
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Figare 1 = |
The differential equauon for the mass- sprmg-dashpot system can be written as

Y Foel™ —itip) t

M- +e -thw_ - )

Where W =W (xy, y1, t)

f(x,y) =8 (X, y1) Fo; & (X1, Y1) being the Dirac-delta function in two dlmensmns
c and. Ks are the dashpot strength and the spring constant respcctxvely. :

Combining (1) and (2) we may write

i S TR I
‘Thé solution may now be assumed in the form ' T
@ (—w+ipt .
W=3%BumXnYae e @

m=1 n=1

where Xm, Yn are the elgenfunctwns of a clamped beam We now\ expand 3 (Xn Y1) by a
fourier series—
$GELy)= 3 3 AmnXm Yn - o (5)
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where Amn=— 4;b Xm (1) Yn (1)

Substituting (5) and (4) in (3) we have
w o ‘ e (—-M-Hp)t ) N ("”+lp)t
%% B {a4m+ﬂ4n+@5"~’”}xmne +

anXmYn 5]

m~] n-1 =1

Lm8
. -'5 M8

2
m

1 ® o #+ip)teo
+ ibab % EXm(Xl)Yn(Yx)XmYne 2 2 B Yo Mlp—s+eip -0 +K.) ]

i~1j=1
=0 6)
. Expanding X" and Y’n by Fourier series in terms of beam functions we can write
Xm*—am\ ElKi X ; ; Yn——,Bn 2 Lj Y; )
isz J__l

where ap, and Bn are the parameters in Xm and Y, the numerical values of which will be given
later, :

Using (7) the equation (6) becomes

~—u+ip)t
[an {otin +.£_<u>_ }+2 3 z ByesfiKuln | Xn Yae
m-=1 n-1 e J-—
1 @ww (—u+ip)t
+m 3 3 Xm(x)Yo(y)XmYne 2 2 BlJXI(xl)YJ()h) M(lp””)2+c(lp‘”)
40 m-1 n-1 i-1j=1
Ks }]: 0 (8)
Putting ‘ | |
. _mn . m n,
Cuun=2%b? (am-+Ba+2amffs K Ln )
mn 1 g
Cu =2 a?b? ai® ,312 Kan, 1=}=m, or _]:#:ll
] _ T . ‘ - v
Er:; = Xm (x1) Yo (y;) X1 (x1) Y (1) - - and collecting the coefficient of
(—s-+ip) t - | | |
each Xm Yye - in(8) and equating to zero we get T =
. ® 2._p%atht mn MO0 | | _ |
? .leu [Cu +__P_(g__%_)_a_b_8m +Eu ab{ M (u2~p*)+Ks—ch }] =0 . (9
=l Ll e
m=1 2 3...cceee.. .

wtoey Ly

~,
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and

o @D 2 22 mn
S S By [M Su +E1j "aD 5, oM — C“p):‘ —0 (10)
i1 -1
' m=1,23 e
D o=1,2 3ererun

Thus we get two infinite sets of homogeneous equations in the unknowns Bi;. The
non-dimensional parameters involving 1 and p can be found from the condition that the two
infinite determinants of coefficients shall vanish for non-trivial solutions.

3. Plate with a single concentrated mass M,

We get this case by putiing Ks = ¢ =& = 0in the above eq‘uaiions. The set of
equations (10) vanishes identically and the set (9) reduces to

w W mn mn M mn '
% By Cy — A8y + 55 Eu Yt =20 (11
i=1 j=1 Mp : : :
m=1,2,3..
n =1,2 Jeiieiaiens

Numerical work has been carried out for the case of a square clamped plate with a concentra-
ted mass at centre. Considering only symmetric v1brat10ns the beam functions selected are
‘cosh amXx €OS amX

Xy 2 TmA "
M= "cosh apma COS ama

_. cosh Bny  COS Bny ’ .
Ya= cosh fab ~ cos fab ‘ 12)

The values of ama and Bnb are given in the Table-1, below.

-

TABLE 1
m apd = PBmb
1 2.3650204
2 5.4978039
3 '8.6393798
m>3 (4m—-1)§

Taking third order determinats, approximations to the first three symmetric modes
have been given. The convergence has been studied by allowing the first order determinant,
the second order determinant and the third order determinant to vanish successively. These
calculations have been carried out for several values of M/Mp ratio and the results have

“been given in the figures 2 and 3. It was found that the convergence of the values for A for
- the ﬁtst mode is good. . To obtain better values one will have to consider higher order deter-
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minants. It was also found that for M/Mp = 0.0022 values of A for the sc:coxid and third
modcs are equal. This happens because of the presence of a nodal point at th

¢ centre in the
second mode of an ordinary plate without concentrated mass,

The presence of mass leaves
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the frequency of this mode unaffected while that of the third mode is reduced. Hence for
values of M/Mp >0'0022 the order of the modes get interchanged.

When the M/Mp ratio is very large it is customary to approximate the system by a
single degree of freedom system for the first mode of vibration. In the approximation the
plate is replaced by an equivalent spring having a spring constant Kp. This spring constant
(Timoshenko Krieger 1959) Kp has a Value of D/0°0224 a® for a square plate of side 2a.
Using this we may write down the square of the circular f requency of the system as

p? = Kp/M = D/00224 Ma? R
This may be rewritten as
_p- (2a)* (2a)? _ 13-4
“VDjp «/M/Mp

The variation of this frequcncy parameter has been presented in Flg 2. in dotted Jines. It may
be noticed that for values of M/My - greater than unity this approxxmate theory differs from the
exact theory by less than 5 pcrcent The two frequencies become indistinguishable for M/Mjp
greater than 2.25. " B

4. Plate with a spring.

The solution for. this case is obtained by putting ¢, » and M equal to zero in the set of
equations (9) and (10). The set (10) vanishes identically and the set (9) reduces:to, . .

o

o, 242h2 mn b
2 EBu Cu —JPfIi;——Sij ﬂ i ] = 0 13)
=1 j=1
m=1,2, 3. eeen. .
n =123 ) N
Again putting Kp=W£’m‘this set can b(e_‘ writtgn as
W W mn o p2a2b2 mn mn b Ks : o
3 SByfcy — LR S Ry ] =0 1)
j=1 j=1 D | a’"Kp 00896 ,
m=1,23.........c.
I] == l,'z, 3 2000 ven

Here again we obtain an infinite determinant and the approximation to A are determi-
ned as described in Art. 3. The numerical calculations have been carried out for a -square
plate with a spring at the centre, considering symmetric vibrations just as in Art. 3. The
_results are given in Fig. 4. It may be noticed that the centre of the plate happens to be a
nodal point for the second mode.
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- 3. Plate with a dashpot-

We obtain this case by putting M and Ks equal to zero., The following non- dlmensio-
‘nal parameters have been introduced for convenience,

2 _n2) q2h2 b
A1=P(u p?) a%b X— CHha

D ’ - 4D ; ‘
—_ 2upra’®® < cpab | | (15)
n= PPy oo | v

D ’ 4D

We now obtain the infinite sets of homogeneous equations from (9) and (10)

2 EBIJ [Cu + A 81: —X By ] =0

(16)
i=1 j=1

m=123..........

n =12 3.........
and .
@ oo — mn  _  mnq
i 21. .ElBu' M &y — X By ] =0 (7
I=s j=.==’ - .

= 1,2, 3uerrniveenen.
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From the relations (15) we have
P (p+ip)? a? b?

=X +ik ' ‘ (18)

. D
and )
. 16 D o
b+ ip) = — (X +iX ) | 19 -
Using (19) in (18) we get i
A =]6:282 (X2———_)Z2) ' (20)
Aj=i2__éf;.P_, XX @l

The values of_Xl, A1, X and X must now be determined such that the determinants correspon-'

ding to (16) and (17) vanish and the relations (20) and (21) are satisfied, The numerical
labour in such a determination is quite involved and would require the use ofa digital
computer.

REFERENCES

Das, Y.C. and D.R. Navaratna (1963), “Vibrations of a’Rectangular Plate with Concentrated
‘Mass, Spring and Dashpot”, Journal of Applied Mechanics, Vol. 30, March
1963, P.31. .

Timoshenko, S.P. and W, Krieger (1959), “Theory of Plates and Shells”, McGraw-Hill, New
York, 1959, P.206.

~ Wah, T. (1961), <“Natural Frequencies of Plate-mass Systems”, Proceedings, Seventh Congress
on Theoretical and Applied Mechanics, Bombay, Dec. 1961, P. 157.

Young, D, (1948), “Vibration of a Beam with Concentrated Mass, Spring and Dashpot”,
Journal of Applied Mechanics, Vol, 15, March 1948, P, 265. .

]



