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ABSTRACT

The Airy stress function for a long tensile fault of arbitrary dip and finite width buried in a
homogeneous, isotropic, perfectly elastic half-space with rigid boundary is obtained. This Airy stress
function is used to derive closed-form analytical expressions for the stresses at an arbitrary point of the
half-space with rigid boundary caused by a long vertical tensile fault of finite width. The variation of the
stress fields with distance from the fault and depth is studied numerically.
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INTRODUCTION

Steketee (1958) first made use of the elastic theory of dislocations to obtain the displacement and
stress fields of a strike-slip fault. Following this fundamental study, numerous theoretical formulations
describing the deformation of an isotropic, homogeneous, semi-infinite medium have been developed.
Okada (1985) presented analytical expressions for the surface displacements, strains and tilts due to
inclined shear and tensile faults in a half-space for both point and finite rectangular sources. Okada (1992)
extended these results to internal deformation.

The tensile-fault representation has several very important geophysical applications, such as
modelling of the deformation field due to a dyke injection in the volcanic region, mine collapse, or fluid-
driven cracks. Moreover, several studies have shown that a large number of earthquake sources cannot be
represented by the double-couple source mechanism which models a shear fault. Dziewonski and
Woodhouse (1983) obtained the ‘centroid-moment tensor’ solutions for 201 moderate and large
earthquakes and observed that the shallow earthquakes north of New Guinea and along the Soloman
Islands showed systematic and substantial departures from the double-couple mechanism. Barker and
Langston (1983) observed that the inversion of long-period teleseismic P and SH waves, for the 25 and 27
May 1980 Mammoth Lakes, California, earthquakes, yielded moment tensors with large non-double-
couple components. According to Julian (1983) and Sipkin (1986), the non-double-couple mechanism
might be due to the tensile failure under high fluid pressure. Therefore, it is important to study the elastic
field of a tensile dislocation. For a complete description of the elastic field of an earthquake source, using
the elastic dislocation theory, it is necessary to consider all the three components, namely, strike-slip, dip-
slip and tensile. While the strike-slip and dip-slip cases have been discussed extensively in the
seismological literature, tensile dislocation has received comparatively less attention.

Maruyama (1964) obtained surface displacements due to vertical and horizontal rectangular tensile
faults in a semi-infinite Poisson solid. Davis (1983) derived an expression of the vertical displacement
due to an inclined tensile fault in a half-space and showed that this model can approximate well a tensile
crack, just as shear dislocations are successfully used to approximate the deformation fields by shear
cracks. Yang and Davis (1986) obtained closed analytical expressions for the displacements, strains and
stresses due to a rectangular inclined tensile fault in an elastic half-space.

Singh and Garg (1986) obtained integral expressions for the Airy stress function in an unbounded
medium due to various two-dimensional sources. Beginning with these results, Rani et al. (1991) obtained
closed-form analytical expressions for the Airy stress function, displacements and stresses in a
homogeneous, isotropic, perfectly elastic half-space due to an arbitrary line source. By integrating over
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the width of the fault, Rani and Singh (1992) obtained expressions for the Airy stress function,
displacements and stresses in a uniform half-space due to a long dip-slip fault of finite width. Recently
Piombo et al. (2007) studied the displacement, strain and stress fields due to shear and tensile dislocations
in a viscoelastic half-space.

It is useful to consider the effect of material discontinuities on the elastic field due to a tensile
dislocation. The simplest model to consider the effect of a material discontinuity is that of a tensile

dislocation in an elastic half-space (say, medium 1 with rigidity g4 ) in contact with another elastic half-
space (say, medium 2 with rigidity z,). If m=z4/u, , the two particular cases of special interest are for

m=0 and m—oo. In the case of m =0, we have a tensile dislocation in an elastic half-space with free
boundary, as discussed by Singh and Singh (2000). On the other hand, when m — o, we have the case

of tensile dislocation in an elastic half-space with a rigid boundary, as considered in the present study.
This implies that our model consists of a tensile dislocation in an elastic half-space in contact with a rigid
half-space. This model is useful when the medium on the other side of the material discontinuity is very
hard. High-rigidity layers are generally present at depths below a volcanic edifice, covered by much softer
volcanic-sedimentary layers composed of a mixture of ash, mud and lava (Bonafede and Revalta, 1999).

The aim of the present paper is to study the two-dimensional deformation of a uniform half-space
with rigid boundary caused by a long tensile fault of finite width. Beginning with the closed-form
expression for the Airy stress function for an arbitrary line source in a uniform half-space given by Rani
et al. (1991) and following Singh and Singh (2000), we obtain Airy stress function for a long tensile fault
of arbitrary dip and finite width and the expressions for the stresses at any point of the half-space with
rigid boundary caused by a long vertical tensile fault. Analytic integration over the width of the fault
yields the desired Airy stress function, and the expressions for the stresses at any point of the half-space
follow immediately.

THEORY

Let the Cartesian coordinates be denoted by (X;,X,,X;), with the X,-axis oriented vertically
downward. We consider a two-dimensional approximation, in which the displacement components u,,
u, and u, are independent of X, such that /0x, = 0. Under this assumption, the plane-strain problem
(u, =0) can be solved in terms of the Airy stress function U such that

o’V
T = o (1a)
o’V
Ty = o (1b)
o’V
Ty =— (1c)
OX,0X,
and
ViV =0 (2)
where 7,,, 75, and 7,; are the components of stress and
, 00 &
=—5t—7 (3)
OX;  OXg

As shown by Singh and Garg (1986), the Airy stress function U, for a line source parallel to X, -axis
and passing through the point (0,0, h) in an infinite medium can be expressed in the form

Uy = Iow[(Lo +Mk|x, - hI)Sin kx, +(F{) +Qok %, - h|)cos kX, }kfle*k‘xrh\dk )
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where the source coefficients L,, M,, P, and Q, are independent of the variable k. Singh and Garg
(1986) and Singh and Rani (1991) have obtained these source coefficients for various seismic sources.

For a line source parallel to the X, -axis and acting at the point (0,0, h) of the half-space x, >0, a
suitable solution of the bi-harmonic equation (i.e., Equation (2)) is of the form

U =Uj + [ [ (L+Mioxg)sinksx, +(P+Qks, )coskx, |k 'e ™ *dk (5)
0

where U, is given by Equation (4); and L, M, P and Q are unknowns to be determined from the

boundary conditions. We assume that the surface of the half-space X; > 0 is with a rigid boundary.
Therefore, the boundary conditions are

u,=u;=0at x; =0 (6)
We have (Sokolnikoff, 1956)
oJ 2

2uU,= — &2+—J'V Udx, (7a)

and
24U,= — %+— j vaUdx, (7b)

with

A+ 1
- ﬁ+2i¢ - 2(1-0) ®)
Using Equations (5)—(7), we get

=—(L, +Mkh)e™ (9a)
M =—Me™ (9b)
=—(P, +Q,kh)e ™ (9¢)

and
Q=—Qe ™ (9d)

On putting the values of L, M, P and Q from Equations (9a)—(9d) in Equation (5) and integrating, the
Airy stress function at any point of the half-space is obtained as

X,|X; —h
TR P T v R 06+
| —hl (% +h) R s
(10)
—h 2
+P, Iog( j+QO[|X i (X3;2h) }
where

R? =X + (X, —h)? (11a)
S?=x2+(x,+h)? x,#h (11b)

Following Singh and Singh (2000), the Airy stress function due to a tensile dislocation on an inclined
plane can be expressed in the form,

U =U,;Sin* 6 —U 5 SiN 25 +U 1 COS* & (12)
where ¢ is the dip angle of fault. Further, with ds as the width of the line fault,
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Uy =bdsU,, (13)
is the Airy stress function for a vertical tensile fault (i.e., 6 =90°) with dislocation in the X, -direction,

Uyps =bdsU (14)
is the Airy stress function for a vertical dip-slip fault,

U, =bdsU., (15)

is the Airy stress function for a horizontal tensile fault (i.e., 6 = 0°) with dislocation in the X, -direction,
and

ouU . )
U, =U; =15 aUk+y —‘+% (16)
oYy oy, oy

where U, denotes the Airy stress function at an arbitrary point P(X,,X;) for a unit concentrated force
acting at the point Q(Y,, Y,) in the x; -direction.

On using the values of the source coefficients L,, M,, P, and Q, given in Appendix,
Equations (10) and (12) yield the Airy stress function due to a long tensile fault of arbitrary dip o as

. /lde |:|Og (Ej—l-cos 25{(X3F;2h)2 3 ()(3;'2h)2 }_Sin 25{)(2 (X3 - h) + X, (X32+ h) }} a7

 27(1-0) R R? S
where o denotes Poisson’s ratio and u denotes rigidity. This equation gives the Airy stress function for
a line tensile dislocation located at the point (0, h). However, if the line source is located at an arbitrary
point (Y,,Ys), X, and h in Equation (17) should be replaced by (X, —Y,) and vy, respectively. We
thus obtain

2 2
U =ﬂ{log(§J+C0825{(x‘? ;ezys) _(X3+y3) }

272'(1—6) R SZ
(18)
—sin 25{()(2 —¥2)(%6 =) + (% = ¥,) (X + ys)}}
R? X

with

R* = (Xz - yz)z + (Xs - y3)2 (19a)
and

§% = (% = ¥,)" + (% + Y5’ (19)

From Figure 1, we put y, =SC0So and Yy, =SsSind into Equation (18) and integrate over S between
the limits (s,,S,). We thus obtain the following expression for the Airy stress function for a long tensile
fault of finite width L =s, -5, :

U =(x,sin & —x,coss)tan™ 5 — (X, COS S + X, Sin 5)}

(x,Sin & — X, COS5)
5 (20)

—(X,SINS+X, cos&)tan—{s—(xz COS S — X, Sin 5)}

(X,in & +X,C0S5)

)
where

f(s)

= f(s) - f(s) 21)
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Fig. 1 Geometry of a long tensile fault of width L =s, —s, (the Cartesian coordinates of a point
on the fault are (y,,y,) and its polar coordinates (s,5), where ¢ is the dip angle and

S, <s<s,)

From Equations (1) and (21), the following expressions for stress components due to a vertical tensile

fault (i.e., & =90°) are obtained

S2

ub | X +AXX (2x\;§2 —52)+4x22 X, (x;‘ +2x28? —354)

27 - o) 2 2
[(xz2 +(s* —x§)) +4x§x§}

S

S2

[xg (20 —45%) + x; (8xZs? 85" —16x; )+ X, (45" +4x3s® —4s® —4x; )]

b , 7

[(xj +(s* - x§)) +4x22x§}
Tona = S
2 27(1-0)
) [4x;‘x3 (357 +X¢ ) +8X5x; (5 —2x3s% + X3 ) + 4%, (3x}s " —3x]s +X§ - 86)]

U

[(xz2 +(s% - x32))2 +4x22x32}2
— S

T3 =

2r(l—o)

NUMERICAL RESULTS

(22)

(23)

(24)

To study the two-dimensional stress fields around a long vertical tensile fault of finite width L in a
uniform half-space with rigid boundary, we put s, =0 and s, =L, and assume o = 0.25. For numerical

calculations, we define the following dimensionless quantities:

y =X

Z =

— |oa>< — |N

(25a)

(25b)
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R = s Tjj
ub

Thus, Y is the dimensionless distance from the fault trace, Z is the dimensionless depth, and P,,, P,

(25¢)

and P,; are the dimensionless stresses.
From Equations (22)—(25c), we obtain
8YZ[Y'+2*+22° +2Y°Z* -2Y* 3]

22 2 2 (26)
3[{Y2+(1—ZZ)} +4YZZZ}
8Y[5Y4ZZ—Y4+2Y222—Y2—4YZZ4+Z4—Z6—1]
P23: - 5 2 (27)
3 {Y2+(1—Zz)} +4Y272
82[3Y4+Y422+2Y2—4Y222+2Y224+26—3z4+322—1]
Py = - 5 32 (28)
3 {Y2+(1—zz)} +4Y272
DISCUSSION

Figures 2(a)-2(c) show the variations of the dimensionless stresses P,,, P, and P,;, respectively,
with dimensionless distance from the fault in the cases of x; = 0.1L, 0.3L and 0.5L. The patterns of P,,
and P, are similar with the only difference that P,, changes its sign from negative (i.e., compressive
stress) to positive (i.e., tensile stress) for some values of X, lying between L and 2L. Both are zero at X,
=0. P,; has non-zero values at X, =0 and it also changes its sign for some values of X, lying between 0
and L. All the three stresses tend to zero for the large values of X,. The variation of stress P,, with

distance from the fault (see Figure 2(a)) for X, = 0.1L is similar to that for P,, at X, =0, as in Singh and

Singh (2000), but for large values of depth, the pattern near the origin is significantly different due to the
rigid boundaries.

Figures 3(a)-3(c) show the variations of the dimensionless stresses P,,, P,; and P,;, respectively,
with depth at X, = 0.3L, 0.8L and 1.3L. The variations of the normal and shear stresses are smooth for
the large values of X;. These variations are noteworthy near the fault, particularly at X, = L. The patterns

of the stresses P,, and P,; in Figures 3(a) and 3(b) respectively are similar to those obtained by Singh
and Singh (2000), except for the behaviour of stress components very near the origin.
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APPENDIX: VALUES OF SOURCE COEFFICIENTS

The values of source coefficients L,, M,, P, and Q, in three different cases are given below,
where the upper sign is for X, > h, the lower sign is for x, <h, b is the magnitude of the displacement
dislocation, and ds is the width of the line fault.
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Fig. 2 Variations of the dimensionless (a) normal stress P,,, (b) shear stress P,,, (c) normal
stress P,;, with distance from the fault for x, = 0.1L, 0.3L and 0.5L
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Fig. 3 Variations of the dimensionless (a) normal stress P,,, (b) shear stress P, (c) normal
stress P,,, with depth for x, = 0.3L, 0.8L and 1.3L
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1. Vertical Dip-Slip Fault
L,=PR=Q,=0 (A1)
bds
M, =+ (A.2)
2r (1—0‘)
2. Vertical Tensile Fault
L,=M,=0 (A.3)
bds
P=-Q=—"t——_ (A4)
27(1-0)
3. Horizontal Tensile Fault
L,=M,=0 (A.5)
ubds
R=Q=-""—= (A.6)
27[(1—0)
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