Paper No. 76

Units

Bulletin of the Indian Society of Earthquake Technology. Vol. 6, No. 3, pp. 109-130. Sept. 1969

# DESIGN OF A TYPICAL MACHINE FOUNDATION BY DIFFERENT METHODS

#### Shamsher Prakash\* and V.K. Puri\*\*

#### **Synopsis**

Procedures for evalution of soil constants from a resonance test, for the design of machine foundations have been illustrated by Barkan, Pauw and Richarts' methods. Based upon these soil constants, two typical foundations, resting on two different types of soils have been checked, by the three methods to illustrate the application of different design methods in practice.

#### Introduction

For evalution of dynamic soil constants a resonace test is recommended (Prakash and Gupta 1967). However there are several methods by which the results of this test can be interpretted (Prakash 1965). Resonance test data reported on two different sites (Gupta 1965 and Kondner 1964) has been interpretted by Barkan, Pauw and Richart's methods of analysis. Two typical foundations resting on two different soils have then been checked based on the three methods and comparison of the natural frequencies and amplitudes of motion has been made.

#### Notation

| -                                |                                                            |                     |
|----------------------------------|------------------------------------------------------------|---------------------|
| ä                                | Length of the foundation                                   | m                   |
| a <sub>x</sub> -                 | Dimensionless frequency Factor for sliding vibrations      |                     |
| $a_{\phi}$                       | Dimensionless frequency factor for rocking vibrations      |                     |
| az                               | Dimensionless frequency factor for vertical vibrations     |                     |
| Α                                | Area of the foundation in contact with soil m <sup>2</sup> |                     |
| As                               | Amplitude factor for sliding                               |                     |
| Ar                               | Amplitude Factor for rocking                               |                     |
| A <sub>x</sub>                   | Amplitude in sliding                                       | mm 🍙                |
| $A_{\phi}$                       | Amplitude in rocking                                       | Radian              |
| Α <sub>×φ</sub>                  | Amplitude in combined rocking and sliding                  | mm                  |
| b                                | Width of foundation                                        | m                   |
| Cu                               | Coefficient of elastic uniform compression of soil         | $kg/cm^3$ , $t/m^3$ |
| $\mathbf{C}_{\boldsymbol{\phi}}$ | Coefficient of elastic non-uniform compression of soil     | kg/cm <sup>3</sup>  |
| CT                               | Coefficient of elastic uniform shear of soil               | $kg/cm^3$ , $t/m^3$ |

\* Professor of Soil Dynamics, University of Roorkee, Roorkee, U.P. (India).

Symbol

\*\* Lecturer in Civil Engineering, H.B.T.I., Kanpur, U.P. Formerly, Technical Teacher Trainee, University of Roorkee, U.P. (India).

# Bulletin of the Indian Society of Earthquake Technology

| E                                   |     | Modulus of elasticity of soil                                                                                                               | $kg/cm^2$ , $t/m^2$                 |
|-------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| $f_{nx}$                            |     | Natural frequency in sliding                                                                                                                | c.p.s.                              |
| fnø                                 |     | Natural frequency in rocking                                                                                                                | c.p.s.                              |
| $\mathbf{f}_{\mathbf{n}\mathbf{z}}$ |     | Natural frequency in vertical vibration                                                                                                     | c.p.s.                              |
| fnxd                                |     | Natural frequency in combined rocking and sliding                                                                                           | č.n.s.                              |
| g                                   |     | Acceleration due to gravity                                                                                                                 | $m-sec^{-2}$                        |
| G                                   |     | Shear modulus                                                                                                                               | $kg/cm^2$ , $t/m^2$                 |
| h                                   | r.  | Equivalent height of surcharge<br>Height of foundation block.                                                                               | m                                   |
| Ι                                   |     | Moment of inertia of the foundion contact area about<br>an axis passing through the C.G. of the base perpendicular<br>to plane of vibration | m <sup>4</sup>                      |
| Im                                  |     | Mass moment of inertia of foundation and accessories about an axis through the C.G. of the system                                           | t-m-sec <sup>2</sup>                |
| Imo                                 | 1.2 | Mass moment of inertia of foundation and machine about<br>an axis through the C.G. of the base of the foundation                            | t-m-sec <sup>2</sup>                |
| Ims                                 | -   | Mass moment of inertia of foundation and machine and soil mass about an axis through combined C.G.                                          | t-m-sec <sup>2</sup>                |
| k <sub>x</sub>                      |     | Spring constant for sliding vibration                                                                                                       | t/m                                 |
| $\mathbf{k_z}$                      |     | Spring constant for vertical vibration                                                                                                      | t/m                                 |
| k <sub>xz</sub>                     |     | Spring constant for rocking vibration                                                                                                       | t/m                                 |
| L                                   |     | Height of C.G. of foundation and machine above the base of the foundation                                                                   | m                                   |
| m                                   |     | Mass of foundation and machine                                                                                                              | t-m <sup>-1</sup> -sec <sup>2</sup> |
| ms                                  |     | Apparent soil mass                                                                                                                          | t-m <sup>-1</sup> -sec <sup>2</sup> |
| M                                   |     | Exciting moment                                                                                                                             | t-m                                 |
| P                                   |     | Exciting force                                                                                                                              | <b>t</b>                            |
| r <sub>x</sub>                      |     | Equivalent radius for sliding vibration                                                                                                     | m                                   |
| rφ                                  |     | Equivalent radius for rocking vibration                                                                                                     | m                                   |
| rz                                  |     | Equivalent radius for vertical vibration                                                                                                    | m                                   |
| w <sub>ux</sub>                     |     | Natural circular frequency in sliding                                                                                                       | sec-1                               |
| $w_n \phi$                          |     | Natural circular frequency in rocking                                                                                                       | sec <sup>-1</sup>                   |
| Wnxd                                |     | Natural circular frequency in combined rocking and sliding                                                                                  | sec-1                               |
| Wnz                                 |     | Natural circular frequency in vertical mode of vibration                                                                                    | sec-1                               |
| ξ                                   |     | Damping factor                                                                                                                              |                                     |
| P                                   |     | Density of soil                                                                                                                             | t/m <sup>3</sup>                    |
| ε                                   |     | Eccentricity factor                                                                                                                         | ·/ ···                              |
| ax                                  |     | Length of the element                                                                                                                       | m                                   |
| a <sub>y</sub>                      |     | Width of element                                                                                                                            | m                                   |
| a <sub>z</sub>                      |     | Height of the element                                                                                                                       | m                                   |
| <b>y</b>                            |     | Ratio I <sub>m</sub> /I <sub>mo</sub>                                                                                                       |                                     |
| q                                   |     | Static soil pressure                                                                                                                        | kg/cm²                              |

### Design of a Machine Foundation : Shamsher Prakash and V.K. Puri

111

#### Particulars of Available Test Data :

D. C. Gupta<sup>1</sup> (1965) performed resonance tests on four foundation blocks of one metre height resting on the surface of sandy soil and subjected to sinusoidally varying horizontal unbalance force. The tests were performed by mounting Lazan Oscillator on the top surface of the block and recording amplitudes of motion of the block at different frequencies. The results on a block of  $1 \text{ m} \times 1 \text{ m} \times 1 \text{ m}$  have been taken up for analysis. The particulars are given below and record of observations in Table I.

| Weight of fonndation block    | = | 2.21 tonnes          |
|-------------------------------|---|----------------------|
| Weight of oscillator assembly | = | 0.062 tonnes         |
| Density of soil               | = | 1.8 t/m <sup>3</sup> |
| Base area of the block        |   | 1 m <sup>2</sup>     |

| Eccentricity Factor $\epsilon \times 10^{-5}$ cm | Observed Natural<br>Frequency<br>$f_{nx\phi}$ c. p. s. | Peak Amplitude<br>A <sub>max</sub><br>mm | Unbalance Force<br>at Resonance<br>F kg |
|--------------------------------------------------|--------------------------------------------------------|------------------------------------------|-----------------------------------------|
| 1.45                                             | 16.0                                                   | 0.30                                     | 28.0                                    |
| 3.01                                             | 15.0                                                   | 0.43                                     | 58.0                                    |
| 5.43                                             | 13.0                                                   | 0.685                                    | 90.0                                    |
| 9.28                                             | 12.0                                                   | 1.00                                     | 120.0                                   |

Table I--Test Data Reported by D. C. Gupta

Konder (1964) reported data on circular footing resting on Silty Clay, tested under vertical vibrations. The particulars of the test data are as given below :

|   | Diameter of the footing                                 | = | 1.57 m                    |  |
|---|---------------------------------------------------------|---|---------------------------|--|
|   | Weight of the footing including vibrator<br>and ballast | = | 14.02 tonnes              |  |
|   | Unit weight of the soil                                 | = | 1.91 t/m <sup>3</sup>     |  |
| ÷ | Compression modulus of soil at surface E <sub>o</sub>   | = | 740 kg/cm <sup>2</sup>    |  |
|   | Compression modulus of soil at 8.85 m below surface E   |   | 1600 kg/cm <sup>2</sup>   |  |
|   | Shear modulus of soil at surface                        | _ | $G = 326 \text{ kg/cm}^2$ |  |
|   | Shear modulus at 8.85 m below surface                   | = | $G = 693 \text{ kg/cm}^2$ |  |
|   |                                                         |   |                           |  |

The compression modulus and shear modulus were determined by seismic methods.

| Eccentricity<br>Factor<br>$\epsilon \times 10^{-3}$ cm | Natural<br>Frequency<br>f <sub>nz</sub> c.p.s. | Force at Resonant<br>Frequency<br>F kg |
|--------------------------------------------------------|------------------------------------------------|----------------------------------------|
| 1.77                                                   | 15.2                                           | 23.0                                   |
| 3.60                                                   | 13.6                                           | 38.5                                   |
| 5.50                                                   | 12.8                                           | 50.0                                   |
| 7.20                                                   | 12.0                                           | 58.5                                   |
|                                                        |                                                |                                        |

Table II—Test Data Reported by Kondner

The procedure for analysis of test data will now be illustrated.

#### Analysis of Test Data

The test data on sandy soil will be analysed first.

#### **Barkans** Method

Fig. 1 shows a section of the block  $1 \text{ m} \times 1 \text{ m} \times 1 \text{ m}$  high. The axis of rotation of the block is perpendicular to the plane of the figure.

### 1. Moments of Inertia

(a) Base Area.

 $I^* = \frac{1 \times 1^3}{12} = 0.0834 \text{ m}^4$ 

(b) Mass of oscillator and block.

For oscillator,  $I_{m_1} = \frac{0.062}{9.81} (0.656)^2 = 0.00272 \text{ t-m-sec}^2$ 

For foundation block  $I_{m_2} = \frac{m}{12} (a_x^2 + a_y^2)$ 

$$= \frac{2.21}{9.81 \times 12} (1+1) = 0.0376 \text{ t-m-sec}^2$$
  
Im = Im<sub>1</sub> + Im<sub>2</sub> = 0.00272+0.0376 = 0.04032 \text{ t-m-sec}^2

$$I_{mo} = 0.0376 + \frac{2.21}{9.81} (0.5)^2 + \frac{0.062}{9.81} (1.156)^2 = 0.10237 \text{ t-m-sec}^2$$
$$\gamma = \frac{I_m}{I_m 2} = 0.394$$

\* All the symbols have been defined in the notation.



O \_ BLOCK NO 1



Design of a Machine Foundation : Shamsher Prakash and V. K. Puri

#### 2. Determination of $C_T$

Frequency equation for combined rocking and sliding (Barkan, 1962) is

$$w^{4}nx\phi - \frac{w^{2}nx + w^{2}n\phi}{\gamma} w^{2}nx\phi + \frac{w^{2}nx \cdot w^{2}n\phi}{\gamma} = 0$$
  

$$w^{2}nx = \frac{C_{T} \cdot A}{m} = \frac{C_{T} \times 1}{2.272/9.81} = 4.32 C_{T}$$
  

$$w^{2}n\phi = \frac{C_{\phi} \cdot I}{I_{mo}} = \frac{C_{\phi} \times 0.0833}{0.10237} = \frac{3.74 C_{T} \times 0.0833}{0.10237} = 3.02 C_{T}$$

assuming  $C_{\phi} = 3.74C_T$ 

Substituting in the frequency equation

$$w^{4}nx\phi - \frac{4.32 C_{T} + 3.02 C_{T}}{0.394} w^{2}nx\phi + \frac{4.32 \times 3.02}{0.394} C_{T}^{2} = 0$$
  
33.1 C<sub>T</sub><sup>2</sup> - 18.6 C<sub>T</sub> · w<sup>2</sup>nx\phi + w<sup>4</sup>nx\phi = 0  
C<sub>T</sub> = 0.5 w<sup>2</sup>nx\phi ; C<sub>T</sub> = 0.06 w<sup>2</sup>nx\phi  
wnx\phi = 2 \pi f\_{nx\phi}

For observed natural frequency,  $f_{nx\phi} = 16 \text{ c.p.s.}$  the values of  $C_T$  come out to be 5.05 kg/cm<sup>3</sup> and 0.595 kg/cm<sup>3</sup>. Substituting  $C_T = 5.05$  Kg/cm<sup>3</sup> in the frequency equation, we get  $f_{nx\phi_1} = 16.2$  c.p.s.

 $f_{nx\phi_2} = 46.0 \text{ c.p.s.}$ when  $C_T = 0.595$  is substituted we get  $f_{nx\phi_1} = 5.45 \text{ c.p.s.}$  $f_{nx\phi_2} = 15.8 \text{ c.p.s.}$ 

The value of  $C_T$  selected should be such that it satisfies the condition for two natural frequencies. The observed natural frequency is the lower natural frequency in the combined mode. The second natural frequency will have a higher value which is given only by  $C_T = 5.05 \text{ kg/w}^2$ .

So out of the two values of  $C_T$  so obtained, only the higher value will satisfy the condition for two natural frequencies.

The values of  $C_T$  have been shown in col. 3, Table III.

#### **Richarts' Method**

1. Equivalent Radii

$$r_{x} = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{1}{\pi}} = 0.564 \text{ m}$$

$$\frac{W}{g} \left(\frac{r\phi^{2}}{4} + \frac{h^{2}}{3}\right) = I_{mo}$$

$$\frac{2.272}{9.81} \left(\frac{r\phi^{2}}{4} + \frac{1^{2}}{3}\right) = 0.10237 \therefore r\phi = 0.64 \text{ m}$$

2. Mass ratio

bx = 
$$\frac{W}{\rho r_x^3} = \frac{2.272}{1.8 \times (0.564)^3} = 7.0$$

3. Inertia Ratio

$$b\phi = \frac{I_{mo} g}{\rho r\phi^5} = \frac{0.10237 \times 9.81}{(1.8) \times (0.64)^5} = 5.07$$

4. Dimensionless Frequency Factors From Richarts charts, Fig. 2b and 2c.

$$a_x = 0.85$$
;  $a_\phi = 0.67$ 

5. Determination of G

$$w^{4}_{nx\phi} - \left[ (w^{2}_{nx} + w^{2}_{n\phi}) + \frac{m}{I_{mo}} Z^{2} w^{2}_{nx} \right] w^{2}_{nx\phi} + w^{2}n\phi \cdot w^{2}_{nx} = 0$$

Z = 0.516 m., where Z is the height of combined C.G. above the basis.

$$w^{2}_{nx} = \frac{(a_{x})^{2}}{r^{2}_{x}} \cdot \frac{Gg}{\rho} = \frac{(0.85)^{2} \times 9.81 \times G}{(0.564)^{2} \times 1.8} = 12.7 \text{ G}.$$

$$w^{2}_{n}\phi = \frac{a^{2}\phi}{r^{2}\phi} \times \frac{G.g}{\rho} = \frac{(0.67)^{2} \times G \times 9.81}{(0.6.4)^{2} \times 1.8} = 6.0 \text{ G}$$





Design of a Machine Foundation : Shamsher Prakash and V.K. Puri

2. Mass ratio

$$b_z = \frac{W}{r_0^3} = \frac{14.02}{1.91 \times (0.785)^3} = 15.12$$

3. Dimensionless frequency factor from Richarts, Fig. 2(a) For bz = 15.12

 $a_{z} = 0.59$ 

4. Determination of G

$$a_z = 2\pi f_{nz} \sqrt{\frac{\rho}{Gg}}; \quad G = \frac{4\pi^2 f_{nz}^2 r_z^2}{a_z^2} \frac{\rho}{g}$$

 $f_{nz}$ ,  $r_z$ ,  $a_z$  being known, G can be computed. The values of G so obtained have been given in col. 4, Table IV below:

| Eccentricity factor<br>ε × 10 <sup>-3</sup> cm | Observed natural frequency c p.s. | C <sub>u</sub> kg/cm³ | G kg/cm <sup>2</sup> |
|------------------------------------------------|-----------------------------------|-----------------------|----------------------|
| 1                                              | 2                                 | 3*                    | 4                    |
| 1.77                                           | 15.2                              | 6.75<br>(2.98)        | 322.0                |
| 3.60                                           | 13.6                              | 5.40<br>(2.38)        | 256.0                |
| 5.40                                           | 12.8                              | 4.76<br>(2.10)        | 230.0                |
| 7.20                                           | 12.0                              | 4 20<br>(1.86)        | 220.0                |

Table IV. Soil Constants for Silty Clay

\* Values in the brackets show values of Cu for standard 10 m<sup>2</sup> area.

# Pauw's method

From the data reported by Kondner for the silty clay under consideration. Compression modulus of the soil at the surface Eo = 740 kg/cm<sup>2</sup> Compression modulus of the soil at depth of 8.85 m E = 1600 kg/cm<sup>2</sup> Shear modulus of the soil at surface Go = 326 kg/cm<sup>2</sup> Shear modulus of the soil at depth of 8.85 m G = 693 kg/cm<sup>2</sup> Rate of increase of compression modulus with depth  $\beta = \frac{1600 - 740}{8.85} = 0.9725$  kg/cm<sup>3</sup> Rate of increase of shear modulus with depth  $\beta' = \frac{693 - 326}{8.85} = 0.415$  kg.cm<sup>3</sup> Bulletin of the Indian Society of Earthquake Technology



Fig. 3 b-Section along longitudinal axis section x x'



Fig 3 c—Section along the axis of main shaft section y y'

#### **Design Examples**

Design a foundation for a reciprocating horizontal compressor, the following data being given,

| Operating speed of the engine     | = 120  R.P.M.         |
|-----------------------------------|-----------------------|
| Horizontal unbalance force PSinwt | = 2.5 Sin wt tonnes   |
| Weight of compressor              | =26.0 tonnes          |
| Weight of motor                   | =14.8 tonnes          |
| Density of soil                   | $= 1.8 \text{ t/m}^3$ |

The horizontal unbalance force acts at a height of 0.5 metre above the top surface of the foundation. The soil is sandy having bearing capacity of  $1.5 \text{ kg/cm}^2$ . Use soil constants obtained in Table III.

#### **Barkan's Method**

Cofficient of elastic uniform shear of soil  $C\tau = 0.85 \text{ kg/cm}^2$ . Use foundation of the type shown in Fig. 3.

1. Determination of combined C.G.

Density of concrete =  $2.2 \text{ t/m}^3$ 

Let  $x_0$ ,  $y_0$ ,  $z_0$  denote co-ordinates of the centre of gravity of the whole system w.r.t. co-ordinate axes.

$$\begin{aligned} x_{0} &= \frac{111.76}{24.02} = 4.64 \; ; \quad y_{0} = \frac{84.67}{24.02} = 3.53 \; ; \quad z_{0} = \frac{28.34}{24.02} = 1.19 \\ \% & \text{eccentricity in } x - \text{direction} = \frac{4.64 - 4.50}{9.0} \times 100 = 1.56\% \\ \% & \text{eccentricity in } y - \text{direction} = \frac{3.52 - 3.50}{7.0} \times 100 = 0.0281 \end{aligned}$$

122

9<u>5</u>

Bulletin of the Indian Society of Earthquake Technology

1

| ${m_{1}(x^{2}_{01}) + z^{2}_{01}) + z^{2}_{01})$                                                 | · .                                     | +4.36           | +5.00 | +6.75 | +0.031   | +1.85          | -1.73  | 9.70   | +6.56  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|-------|-------|----------|----------------|--------|--------|--------|
| CG. of<br>CG. of<br>element<br>comined                                                           | Zoi                                     | 1.31            | 1.01  | 0.94  | 0.06     | 366.0          | 0.21   | 5 0.06 |        |
| Dista<br>ween<br>the<br>and<br>CG                                                                | Xot                                     | 0.53            | 1.30  | 0.14  | 0.14     | 0.52           | 1.30   | 3.17   |        |
| Moment of Iner-<br>tia of the element<br>wrt axes passing<br>through CG.<br>t-m-sec <sup>3</sup> | $\frac{m_1}{12} (a^2_{x_1} + a^2_{z_1}$ |                 | 1     | 50.80 | 61.50    | 1.43           | -0.63  | - 0.59 | 112.51 |
| of mass<br>t x,y,z                                                                               | mı zı                                   | 5.57            | 3.68  | 1.87  | 16.60    | 3.28           | - 1.46 | -1.20  | 28.34  |
| moment<br>ement wr                                                                               | mı yı                                   | 7.45            | 5.40  | 27.0  | 46.5     | 5.25           | -3.57  | -3.36  | 84.67  |
| Static<br>of eld                                                                                 | mı Xı                                   | 9.17            | 8.71  | 33.8  | 59 80    | 7.75           | -6.05  | -1.420 | 111.76 |
| of C–G<br>nt wrt<br>es                                                                           | ZI                                      | 2.50            | 2.50  | 0.25  | 1.25     | 2.185          | 1.40   | 1.25   |        |
| nates c<br>eleme:<br>y,x ax(                                                                     | y1                                      | 3.34            | 3.68  | 3.50  | 3.50     | 3.50           | 3.50   | 3.50   |        |
| Coordin<br>of the<br>x.,                                                                         | X1                                      | 4.11            | 5.94  | 4.50  | 4.50     | 5.16           | 5.94   | 1.475  |        |
| Mass<br>t-m <sup>-1</sup><br>sec <sup>2</sup><br>m <sub>1</sub>                                  | · .                                     | 2.23            | 1.47  | 7.50  | 13.30    | 1.50           | -1.02  | -0.96  | 24.02  |
| s of<br>ent                                                                                      | azı                                     |                 |       | 0.50  | 1.50     | 0.370          | 1.20   | 1.50   |        |
| ension<br>Elem                                                                                   | ayi                                     |                 | ļ     | 7.0   | 5.40     | 1.95           | 1.50   | 1.25   |        |
| Dim<br>the                                                                                       | a <sub>x1</sub>                         | , j             |       | 9.0   | 7.30     | 3.36           | 2.50   | 2.270  |        |
| Element<br>of the<br>System                                                                      |                                         | Comp-<br>ressor | Motor |       | <b>6</b> | <b>3(2nos)</b> | 4      | 5      |        |

Table V

Computation of Combined Center of Gravity

Design of a Machine Foundation: Shamsher Prakash and V. K. Puri

Static soil pressure =  $\frac{W}{A} = \frac{24.02 \times 9.81}{9 \times 7} = 3.75 \text{ t/m}^2$ = 0.375 kg/cm<sup>2</sup> < 1.5 kg/cm<sup>2</sup> Operating frequency of the engine w = 120 R.P.M. = 2 c.p.s. = 12.6 rad/sec. w<sup>2</sup> = 158 sec<sup>-2</sup>

Height of the force axis above the combined C.G., h = 2+0.5-1.19 = 1.31 mExciting momet about C.G. of the combined system  $M = 2.50 \times 1.31 = 3.28 \text{ t-m}$ 

### 2. Moment of Inertia

 $7 \times 9^3$ 

$$I = \frac{1}{12} = 425 \text{ m}^2$$
(b)  $I_m = \frac{1}{12} (a_{x1}^2 + a_{z1}^2) m_1 + m_1 (x_{01}^2 + Z_{01}^2)$   
 $I_m = 112.51 + 6.56 = 119 \text{ t-m-sec}^2$   
 $I_{mo} = I_m + mL^2 = 119 + 24.02 \times 1.19^2 = 153 \text{ t-m-sec}^2 (L = Z_0)$   
 $\gamma = \frac{I_m}{I_{mo}} = \frac{119}{153} = 0.78$ 

3. C<sub>T</sub> for 63 m<sup>2</sup> area = 0.85 
$$\sqrt{\frac{10}{63}}$$
 = 0.34 kg/cm<sup>3</sup>, C $\phi$  = 1.20 kg/cm<sup>3</sup>

4. Natural frequency in sliding

$$w_{nx} = \sqrt{\frac{C_{TA}}{m}} = \sqrt{\frac{0.34 \times 10^3 \times 63}{24.02}} = 30 \text{ rad/sec.}, f_{nx} = 4.8 \text{ c.p.s.}$$

5. Natural frequency in Rocking

$$w_{n\phi} = \sqrt{\frac{C\phi.1 - WL}{I_{mo}}} = \sqrt{\frac{1.20 \times 10^3 \times 425 - (24.02 \times 9.81) \times 1.19}{153}} = 57.8 \text{ rad/sec.}$$
  
$$\therefore f_{n\phi} = 9.2 \text{ c.p.s.}$$

6. Natural frequency in combined mode

$$\begin{split} w^{4}_{nx\phi} - w^{2}_{nx\phi} \left( \frac{w^{2}_{n\phi} + w^{2}_{nx}}{\gamma} \right) &+ \frac{w^{2}_{nx} \cdot w^{2}_{n\phi}}{\gamma} = 0 \\ w^{2}_{nx\phi} - \frac{(30)^{2} + (57.8)^{2}}{0.78} w^{2}_{nx\phi} + \frac{(30)^{2} \times (57.8)^{2}}{0.78} = 0 \\ w^{2}_{nx\phi_{1,2}} = 2.71 \times 10^{3} (1 \pm 0.65) \text{ sec}^{-2} \\ w_{nx\phi_{1}} = 29 \text{ sec}^{-1}; \quad f_{nx\phi_{1}} = 4.6 \text{ c.p.s.} \\ w_{nx\phi_{2}} = 67.8 \text{ sec}^{-1}; \quad f_{nx\phi_{2}} = 10.8 \text{ c.p.s.} \end{split}$$

7. Amplitudes

$$\Delta(\omega^2) = m I_m (w_{nx}\phi_1 - w^2) (w_{nx}\phi_2 - w^2) = 24.02 \times 119 ((29)^2 - (12.6)^2) ((67.8)^2 - (12.6)^2) = 8.6 \times 10^9$$

Bulletin of the Indian Society of Earthquake Technology

$$A_{x} = \frac{C_{\phi} \cdot I - WL + C_{T} \cdot AL^{2} + I_{m} w^{2}}{\Delta(\omega^{2})} \times P + \frac{C_{T} \cdot AL}{\Delta(\omega^{2})} \cdot M$$

$$= \frac{1.20 \times 425 - 236 \cdot 19 + 0.34 \times 10^{3} \times 63 \times (1.19)^{2} + 119 (12.6)^{2}}{8.6 \times 10^{9}} \times 2.5 + \frac{0.34 \times 10^{3} \times 63 \times 1.19}{8.6 \times 10^{9}} = 0.0143 + 0.0975 = 0.1118 \text{ mm.}$$

$$A\phi = \frac{C_{T} \cdot AL}{\Delta(\omega^{2})} \cdot P + \frac{C_{TA} - mw^{2}}{\Delta(\omega^{2})} M$$

$$= \frac{0.34 \times 10^{3} \times 63 \times 1.19}{86 \times 10^{9}} \times 2.5 + \frac{0.34 \times 10^{3} \times 63 - 24.02 \times (12.6)^{2}}{8.6 \times 10^{9}} \times 3.28$$

$$= 7.4 \times 10^{-6} + 6.2 \times 10^{-6} = 13.6 \times 10^{-6} \text{ radian}$$

$$Ax\phi = Ax + hA\phi = 0.1118 + 13.6 \times 10^{-6} \times 0.81$$

$$= 0.188 + 0.011 = 0.129 \text{ mm where } h = 2 - 1.19 = 0.81 \text{ m}$$

#### **Richart's Method**

 $G = 1740 t/m^2$ 

For the Foundation shown in Fig. 3.

1. Equivalent radii

$$r_{x} = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{63}{\pi}} = 4.48 \text{ m}$$

$$m\left(\frac{r^{2}\phi}{4} + \frac{h^{2}}{3}\right) = I_{0} = I_{m_{0}} - \text{where } h = \text{height of block} = 2\text{m}.$$

$$24.02\left(\frac{r\phi^{2}}{4} + \frac{2^{3}}{3}\right) = 153 \therefore r\phi = 4.9 \text{ m}$$

2. Mass ratio

$$bx = \frac{mg}{\rho (rx)^3} = \frac{24.02 \times 981}{1.8 (4.48)^3} = 1.45$$

Inertia Ratio

$$b\phi = \frac{I_{o} \times q}{\rho(r\phi)^{5}} = \frac{153 \times 9.81}{I.8 \times (4.9)^{5}} = 0.3$$

3. Frequency Factors

From Richarts charts Fig. 2b and 2c.

$$a_x = 1.4$$
;  $a\phi = 1.4$ 

4. Natural frequency in sliding.

$$\begin{split} w^2{}_{n_x} &= \frac{a^2{}_x \ Gg}{\rho_{ro^2}} = \frac{(1.4)^2 \times 1740 \times 9.81}{1.8 \times (4.48)^2} = 930 \ \text{sec}^{-3} \\ w_{n_x} &= 30 \ 5 \ \text{sec}^{-1} \ \text{;} \ f_{n_x} = 4.8 \ \text{c. p. s.} \end{split}$$

Design of a Machine Foundation : Shamsher Prakash and V. K. Furi

5. Natural frequency in Rocking

$$w^{2}{}_{n}\phi = \frac{a^{2}\phi \ Gg}{\gamma \ (r\phi)^{2}} = \frac{(1.4)^{2} \times 1740 \times 981}{1.8 \times (4.9)^{2}} = 775 \ \text{sec}^{-2}$$
  
$$w_{n}\phi = 27.8 \ \text{sec}^{-1} : \qquad f_{n}\phi = 4.35 \ \text{cp} \ \text{s}$$

6. Natural Frequency in combined mode

$$\begin{split} \mathbf{w}^{4}\mathbf{n}\mathbf{x}\phi &- \left[ \left( \mathbf{w}^{2}\mathbf{n}_{x} + \mathbf{w}^{2}\mathbf{n}\phi \right) + \left. \frac{\mathbf{m}\mathbf{z}^{2}}{\mathbf{I_{o}}} \, \mathbf{w}^{2}\mathbf{n}\mathbf{x} \right] \, \mathbf{w}^{2}\mathbf{n}\mathbf{x}\phi + \mathbf{w}^{2}\mathbf{n}\mathbf{x} \cdot \mathbf{w}^{2}\mathbf{n}\phi = 0 \\ z &= 1.19 \\ \mathbf{w}^{4}\mathbf{n}\mathbf{x}\phi &- \left[ (27.8)^{2} + (30.5)^{2} + \frac{24.02 \times (1.19)^{2}}{15^{3}} \times (30.5)^{2} \right] \mathbf{w}^{2}\mathbf{n}\mathbf{x}\phi + (27.8)^{2} \times (30.5)^{2} = 0 \\ \mathbf{w}^{2}\mathbf{n}\mathbf{x}\phi_{1} &= 725 \ \mathrm{sec}^{-2} : \ \mathbf{w}\mathbf{n}\mathbf{x}\phi_{1} = 26.8 \ \mathrm{sec}^{-1} ; \ \mathbf{f}\mathbf{n}\mathbf{x}\phi_{1} = 4.2 \ \mathrm{c.p.s.} \\ \mathbf{w}^{2}\mathbf{n}\mathbf{x}\phi_{2} &= 1425 \ \mathrm{sec}^{-2} : \ \mathbf{w}\mathbf{n}\mathbf{x}\phi_{2} = 37.5 \ \mathrm{sec}^{-1} ; \ \mathbf{f}\mathbf{n}\mathbf{x}\phi_{3} = 6 \ \mathrm{c.p.s.} \end{split}$$

# 7. Amplitudes

Amplitude factors

As = 0.27; Ar = 1.3  

$$A_{x} = \frac{P}{Gr_{x}} \times As = \frac{2.5}{(1740 \times (4.9)^{3}} \times 0.27 = 0.08 \text{ mm}$$

$$A\phi = \frac{M \times Ar}{G \times r\phi^{3}} = \frac{3.28 \times 13}{1740 \times (4.9)^{3}} = 2.1 \times 10^{-5} \text{ radian}$$

$$A_{x}\phi = A_{x} + hA\phi = 0.08 + (2.1 \times 10^{-5}) \times 0.8 \times 10^{-3}$$

$$= 0.08 + 0.0168 = 0.0068 \text{ mm}$$

### Pauw's Method

From Table III, using smallest values

$$\beta = 3.87 \text{ kg/cm}^3$$
  
 $\beta' = 1.42 \text{ kg/cm}^3$   
Assume  $\alpha = 1$ 

For the foundation shown in Fig. 2,

a = 9 m; b = 7 m  
q = 
$$\frac{24.02 \times 9.81}{63}$$
 = 3.75 t/m<sup>2</sup>; h =  $\frac{q}{\rho}$  =  $\frac{3.75}{1.8}$  = 2.08 m  
S =  $\frac{ah}{b}$  =  $\frac{1 \times 2.08}{7}$  = 0.297; r =  $\frac{a}{b}$  =  $\frac{9}{7}$  = 1.29

1. Spring constants

From Pauw's charts ; for above values of S and r.

$$\frac{\gamma_{\mathbf{x}}^{xy}}{r} = 0.95$$
;  $\gamma_{\mathbf{x}}^{xy} = 1.29 \times 0.95 = 1.23$ 

$$k_{xxy} = \beta' b^2 \gamma_{xxy} = 1.42 \times (10)^3 \times (7)^2 \times 1.23 = 85100 t/m$$

$$\frac{\gamma_{xy}^{xy}}{r} = 0.18 \quad ; \quad k_{xz}^{xy} = \beta b^4 \gamma_{xz}^{xy} = 3.87 \times 10^8 \times (7)^4 \times 1.29 \times 0.18 \text{ t/m}$$
$$= 2160000 \text{ t/m}$$

2. Apparent Soil mass

$$\frac{Cm}{r} = 0.62; \quad Cm = 0.62 \times 1.29 = 0.795$$
$$ms = \frac{\rho \ b^3 \ Cm}{ga} = \frac{1.8 \times 7^3}{9.81 \times 1} \times 0.795 = 63.0 \ t - m^{-1} - \sec^{-1}{1 + 1}$$

3. Apparent mass moment of Inertia of soil  $I_s$ 

$$\frac{C_1}{r^3} = 0.21 ; \quad C_1 = (1.29)^3 \times 0.21 = 0.451$$
$$I_8 = \frac{C_1 \rho b^5}{12 ga} = \frac{0.451 \times (7)^5 \times 1.8}{19 \times 9.81 \times 1} = 116 \text{ t-m-sec}^2$$

Height of C.g. of the soil mass and foundation and machine above the base  $Z = \frac{24.02 \times 1.19}{63.0 + 24.02} = 0.328 \text{ m}$ 

 $I_{ms} = I_m + m (Z_{01} - Z)^2 + I_s + m_s (Z)^2$ = 119 + 24.02 (1.19-0.328)<sup>2</sup> + 116 + 63 (0.228)<sup>2</sup> = 256 t-m-sec<sup>2</sup>

4. Natural Frequency in Sliding

$$w_{nx} = \sqrt{\frac{kx}{m+m_s}} = \sqrt{\frac{85100}{24.02+63.0}} = 31.3 \text{ sec}^{-1}$$
  
 $f_{nx} = 5 \text{ c p.s.}$ 

5. Natural Frequency in Rocking.

$$w_{n\phi} = \sqrt{\frac{k_{xz}}{I_{ms}}} = \sqrt{\frac{2160000}{256}} = 92 \text{ rad/sec.}$$
  
 $f_{n\phi} = 14.5 \text{ c.p.s.}$ 

6. Natural Frequency in Combined Mode

$$w^{2}_{nx\phi1,2} = \frac{1}{2} \left[ \left( \frac{kx}{m} + \frac{Z^{2} k_{x} + k_{zx}}{f_{ms}} \right) \pm \sqrt{\left( \frac{kx}{m} + \frac{Z^{2} kx + kzx}{I_{ms}} \right)^{2}} - \frac{4kx kxz}{m I_{ms}} \right]$$

$$w^{2}_{nx\phi1,1} = \frac{1}{2} \left[ \frac{85100}{87.02} + \frac{(0.328)^{2} \times 85100 + 2160000}{256} \\ \pm \sqrt{\left( \frac{85100}{87.02} + \frac{(0.328)^{2} \times 85100 + 2160000}{256} \right)^{2}} - \frac{4 \times 85100 \times 2160000}{86.02 \times 256} \right]$$

$$= 4715 \ (1 \pm 0.90)$$

Design of a Machine Foundation : Shamsher Prakash and V.K. Puri

$$w_{nx\phi_1} = 21.7 \text{ sec}^{-1}$$
;  $f_{\eta x\phi_1} = 3.5 \text{ c.p.s.}$   
 $w_{nx\phi_2} = 94.8 \text{ sec}^{-1}$ ;  $f_{nx\phi_2} = 15.1 \text{ c.p.s}$ 

# 7. Amplitudes

Assume damping factor = 0.20

$$Ax = \frac{P}{kx \sqrt{\left(1 - \left(\frac{w}{w_{nx}}\right)^{2}\right)^{2} + \left(2 \xi \frac{w}{w_{nx}}\right)^{2}}}$$
  
=  $\frac{2.5}{85100\sqrt{(1 - (0.4)^{2})^{2} + (2 \times 0.2 \times 0.4)^{2}}} = 0.03 \text{ mm}$   
$$A\phi = \frac{Q}{kxz \sqrt{\left(1 - \left(\frac{w}{w_{n\phi}}\right)^{2}\right)^{2} + \left(2 \xi \frac{w}{w_{n\phi}}\right)^{2}}}$$
  
=  $\frac{3.28}{2160000\sqrt{(1 - 0.138^{2})^{2} + (2 \times 0.2 \times 0.138)^{2}}} = 1.77 \times 10^{-6} \text{ radian}$   
$$Ax\phi = Ax + h A \phi$$
  
=  $0.03 + (0.81 \times 1.77 \times 10^{-6}) \times 10^{8}$   
=  $0.03 + 0.014 = 0.0443 \text{ mm}$ 

Design a foundation for a horizontal reciprocating engine with following data.

| Speed of the engine                                                      | _ == | 200 R.P.M.            |
|--------------------------------------------------------------------------|------|-----------------------|
| Total weight of engine                                                   |      | 7000 kg               |
| Weight of reciprocating parts                                            | =    | 45 kg                 |
| Weight of eccentrically rotating parts                                   | =    | 30 kg                 |
| Length of connecting rod                                                 | =    | 100 cms               |
| Crank radius                                                             | =    | 30 cm                 |
| Height of horizontal unbalance force above the top surface of foundation | _    | 30 cm                 |
| Soil-Uniform Silty clay                                                  | .£:  |                       |
| Allowable bearing capacity                                               |      | $1.0 \text{ kg/cm}^2$ |
|                                                                          |      |                       |

Use soil constants determined in Table IV

Solution

$$P = \frac{W_p}{g} rw^2 \left( \cos wt \frac{r}{l} \cos 2 wt \right) + W_c rw^2 \cos wt$$

$$(P)_{max} = \frac{W_p}{g} rw^2 \left( 1 + \frac{r}{l} \right) + \frac{W_c}{g} rw^2, w = \frac{200}{60} \times 2\pi = 21 rad/sec$$

$$= \frac{0.045}{9.81} \times 1 \times (21)^2 (1 + 0.3) + \frac{0.03}{9.81} \times 0.3 (21)^2 = 1.2 t.$$

## Barkan's Method

Adopt a block foundation shown in Fig 4.Density of concrete $= 2.2 \text{ t/m^2}$ Wt. of foundation block $= (4 \times 4 \times 0.5 + 3 \times 3 \times 1) \times 2.2$ = 37.4 t.

Soil pressure = 
$$q = \frac{44.4}{4 \times 4} = 2.78 \text{ t/m}^2$$
  
= 0.278 kg/cm<sup>2</sup> < 1.0 kg/cm<sup>2</sup>



Fig. 4. Cross-section of the foundation block

1. Hight of C-G. above base of foundation

 $Z = \frac{3\ 57}{4.345}\ 0.825\ \mathrm{m}$ 

Exciting Moment =  $M = 1.2 \times 0.975 = 1.17$  t-m

2. Moment of Inertia

$$I = \frac{4 \times 4^{3}}{12} = 21.3 \text{ m}^{4}$$

$$I_{m} = 3.95 + 1.68 = 5.63 \text{ t-m-sec}^{2}$$

$$I_{mo} = I_{m} + m L^{2} = 5.63 + \frac{4.44}{9.81} (0.825)^{2}$$

$$= 8.58 \text{ t-m-sec}^{2}$$

$$\gamma = \frac{I_{m}}{I_{m0}} = \frac{5.63}{8.58} = 0.65$$

3. Soil Constants

Cu for 10 m<sup>2</sup> area (Table IV) = 1.68 kg/cm<sup>3</sup> Cu for 16 m<sup>2</sup> area =  $1.86 \sqrt{\frac{10}{16}} = 1.47$  kg/cm<sup>3</sup> = 1.47 t/m<sup>3</sup> C<sub>T</sub> =  $0.735 \times 10^3$  t/m<sup>3</sup> C $\phi$  =  $2.5 \times 10^3$  t/m<sup>3</sup>

|                                       | m1 (x <sup>01</sup> <sup>8</sup> +z <sup>01</sup> <sup>8</sup> )          |                                        | 0.680    | 0.945     | 0.056 | 1.681 |
|---------------------------------------|---------------------------------------------------------------------------|----------------------------------------|----------|-----------|-------|-------|
|                                       | e between<br>of the<br>ent and<br>ned C.G.                                | Zol                                    | 0.975    | 0.725     | 0.175 |       |
|                                       | Distance<br>C.G.<br>eleme<br>combir                                       | Xoi                                    | 0        | 0         | 0     |       |
| · · · · · · · · · · · · · · · · · · · | Mass moment of<br>inertia of element<br>about an axis<br>through its C.G. | $\frac{m_1}{12} (a_{x1}^2 + a_{z1}^2)$ |          | 2.42      | 1.53  | 3.95  |
|                                       | Static<br>moment<br>w.r.t.<br>z-axis<br>t-m                               | m <sub>1</sub> z <sub>1</sub>          | 1.28     | 0.45      | 1.84  | 3.57  |
|                                       | of C.G.<br>nt w.r.t.<br>t (m)                                             | ZI                                     | 1.80     | 0.25      | 1.0   |       |
|                                       | nates<br>eleme<br>,z axes                                                 | y1                                     | <b>ה</b> | 7         | 6     |       |
|                                       | Cordi<br>of the<br>x,y                                                    | X1                                     | 7        | <b>C1</b> | 7     |       |
|                                       | Mass<br>t-m <sup>-1</sup><br>sec <sup>2</sup>                             | mı                                     | 0.715    | 1.79      | 1.84  | 4.345 |
|                                       | of                                                                        | âzi                                    | •        | 0.5       | 1.0   | , U   |
|                                       | lement                                                                    | ayı                                    |          | 4.0       | 3.0   |       |
|                                       | Din                                                                       | axt                                    |          | 4.0       | 3.0   |       |
|                                       | Element                                                                   | V                                      | Enine    | 1         | 5     |       |

Table V Computation of Centre of Gravity

Design of a Machine Foundation : Shamsher Prakash and V.K. Puri

Bulletin of the Indian Society of Earthquake Technology

4. Natural frequency in Sliding

$$w_{nx} = \sqrt{\frac{C_T A}{m}} = \sqrt{\frac{0.735 \times 10^3 \times 16}{4.35}} = 54.8 \text{ sec}^{-1}$$
  
f<sub>nx</sub> = 8.5 c.p.s. ;  $w_{nx}^2 = 3.0 \times 10^3 \text{ sec}^{-2}$ 

5. Natural frequency in Rocking

$$w_{n\phi} = \sqrt{\frac{C\phi.I - WL}{I_{mo}}} = \sqrt{\frac{2.5 \times 10^3 \times 21.3 - 44.4 \times 0.825}{8.58}} = 78 \text{ sec}^{-1}$$
  
$$f_{n\phi} = 12.4 \text{ c/s}; \quad w^2_{n\phi} = 6.1 \times 10^3 \text{ sec}^{-2}$$

6. Natural frequency in combined mode

$$w_{nx\phi}^{4} - \frac{w_{nx\phi}^{2} + w_{nx}^{2}}{\gamma} w_{nx\phi}^{2} + \frac{w_{nx}^{2} + w_{n\phi}^{2}}{\gamma} = 0$$
  

$$w_{nx\phi}^{4} - \frac{6.1 \times 10^{3} + 3.0 \times 10^{3}}{0.65} w_{nx\phi}^{2} + \frac{6.1 \times 3.0 \times 10^{6}}{0.65} = 0$$
  

$$w_{nx\phi_{1}}^{2} = 2.415 \times 10^{3} \sec^{-2}; w_{nx\phi_{1}} = 49.1 \sec^{-1}; \quad f_{nx\phi_{1}} = 7.8 \text{ c.p.s.}$$
  

$$w_{nx\phi_{2}}^{2} = 11.58 \times 10^{3} \sec^{-2}; \quad w_{nx\phi_{2}} = 108 \sec^{-1}; \quad f_{nx\phi_{2}} = 17.2 \text{ c.p.s.}$$

7. Amplitudes

$$\begin{split} \triangle(\omega^2) &= m \ I_m \ (w^2_{nx}\phi_1 - w^2) \ (w^2_{nx}\phi_2 - w^2) \\ &= 4 \ 35 \times 5.63 \ (2.415 \times 10^3 - 441) \ (11.58 \times 10^3 - 441) = 5.4 \times 10^8 \\ A_x &= \frac{C_{\phi} \cdot I - WL + C_T \cdot AL^2 + I_m \ w^2}{\Delta(\omega^2)} \times P + \frac{C_T \cdot AL}{\Delta(\omega^2)} \cdot M \\ &= \frac{2.5 \times 10^3 \times 21.3 - 44.4 \times 0.825 + 0.77 \times 10^3 \times 16 \times 0.8 - 5.63(21)^2}{5.4 \times 10^8} \times 1.2 + \frac{0.77 \times 10^3 \times 16 \times 0.825}{5.4 \times 10^8} \times 1.17 = 0.152 \ \text{mm.} \\ A\phi &= \frac{C_T \cdot AL}{\Delta(w^2)} \cdot P + \frac{C_T AL - mw^2}{\Delta(w^2)} M \\ &= \frac{0.77 \times 10^3 \times 16 \times 0.825}{5.4 \times 10^8} \times 1.2 + \frac{0.77 \times 10^3 \times 16 - 4.35 \times 441}{5.4 \times 10^2} \times 1.17 \\ &= 4.5 \times 10^{-5} \ \text{radian} \\ Ax\phi &= A_x + h \ A\phi &= 0.152 + 0.675 \times 4.15 \times 10^{-5} \times 10^8 \\ &= 0.152 + 0.0302 = 0.182 \ \text{mm} \end{split}$$

# **Richart's Method**

Try Foundation shown in Fig. 4.

Adopt value of  $G = 2200 \text{ t/m}^2$  (From Table IV)

Design of a Machine Foundation : Shamsher Prakash and V. K. Puri

131

# 1. Equivalent radii

$$rx = \sqrt{\frac{16}{\pi}} = 2.26 \text{ m}$$
  
m  $\left(\frac{r^2\phi}{4} + \frac{h^2}{3}\right) = I_{mo}$   
 $4.35 \left(\frac{r\phi^2}{4} + \frac{1.5^2}{3}\right) = 8.58 \text{ ; } r\phi = 2.20 \text{ m}$ 

2. Mass ratio

$$bx = \frac{mg}{\rho rx^3} = \frac{4.35 \times 9.81}{1.91 \times (2.26)^3} = 2$$

3. Inertia ratio

$$b\phi = \frac{I_{mo} \times g}{\rho(r\phi)^5} = \frac{8.58 \times 9.81}{1.91 \times (2.2)^5} = 1.0$$

4. Frequency Factors

From Richarts charts (Fig. 2)  $a_x = 1.7$ ;  $a\phi = 1.38$ 

5. Natural frequency in sliding.

$$w_{nx} = \frac{a_x}{r_x} \sqrt{\frac{G.g}{\rho}} = \frac{1.7}{2.26} \sqrt{\frac{9.81 \times 2200}{1.91}} \ 80 \ \text{sec}^{-1},$$
  
$$f_{nx} = 12.7 \ \text{c.p.s.}$$

6. Natural frequency in rocking

$$w_{n\phi} = \frac{a\phi}{r\phi} \sqrt{\frac{g}{\rho}} = \frac{1.38}{2.2} \sqrt{\frac{9.81 \times 2200}{1.91}} = 67 \text{ sec}^{-1}$$
  
f<sub>n\phi</sub> = 10.7 c.p.s.

7. Natural frequency in combined mode

$$\begin{split} \mathbf{w}^{4}\mathbf{n}\mathbf{x}\phi &- \left[ \left( \mathbf{w}^{2}\mathbf{n}_{\mathbf{x}} + \mathbf{w}^{2}\mathbf{n}\phi \right) + \frac{\mathbf{m}}{\mathbf{l}_{\mathbf{m}o}}\mathbf{Z}^{2} \mathbf{w}^{2}\mathbf{n}_{\mathbf{x}} \right] \mathbf{w}^{2}\mathbf{n}\mathbf{x}\phi + \mathbf{w}^{2}\mathbf{n}\mathbf{x} \cdot \mathbf{w}^{2}\mathbf{n}\phi = 0 \\ \mathbf{w}^{4}\mathbf{n}\mathbf{x}\phi &- \left[ (84)^{2} + (67)^{2} + \frac{4.35}{8.58} (0.825)^{2} \times (84)^{2} \right] \mathbf{w}^{2}\mathbf{n}\mathbf{x}\phi + (84)^{2} \times (67)^{2} = 0 \\ \mathbf{w}^{2}\mathbf{n}\mathbf{x}\phi_{1} &= 2800 \ \sec^{-2} : \ \mathbf{w}\mathbf{n}\mathbf{x}\phi_{1} = 53 \ \sec^{-1} ; \quad \mathbf{f}\mathbf{n}\mathbf{x}\phi_{1} = 8.45 \ \mathrm{c.p.s.} \\ \mathbf{w}^{2}\mathbf{n}\mathbf{x}\phi_{2} &= 11200 \ \sec^{-2} : \ \mathbf{w}\mathbf{n}\mathbf{x}\phi_{2} = 106 \ \sec^{-1} ; \quad \mathbf{f}\mathbf{n}\mathbf{x}\phi_{2} = 16.9 \ \mathrm{c.p.s.} \end{split}$$

8. Amplitude factors

$$A_s = 0.5$$
;  $A_r = 1.2$ 

Amplitudes

$$Ax = \frac{P \times As}{G r_x^3} = \frac{1.2 \times 0.5}{2200 \times (2.26)^3} = 0.12 \times 10^{-3} \text{ m} = 0.12 \text{ mm}$$

$$A\phi = \frac{A_r \times M}{G \times (r\phi^3)} = \frac{1.2 \times 1.17}{2200 \times (2.2)^3} = 0.06 \times 10^{-3} \text{ radian}$$

$$A_x\phi = Ax + h A\phi = 0.12 + 0.06 \times 10^{-3} \times 0.675 \times 10^3 = 0.1605 \text{ mm}$$

Use the same foundation as above,

The values of  $\beta$  and  $\beta'$  to be used are as given in (Table IV)

 $\beta = 0.97 \text{ kg/cm}^3 = 970 \text{ t/m}^3$   $\beta' = 0.42 \text{ kg/cm}^3 = 420 \text{ t/m}^3$   $E_0 = 740 \text{ kg cm}^2$ Assume a = 1  $q = \frac{44.4}{4 \times 4} = 2.78 \text{ t/m}^2; \text{ h} = \frac{E_0}{\beta} + \frac{q}{\rho} = \frac{740}{97.0} + \frac{2.78}{1.91} = 0.9 \text{ m}$  $r = \frac{a}{b} = 1; \text{ S} = \frac{ah}{b} = \frac{1 \times 9}{4} = 2.25$ 

1. Spring constants

$$\frac{\gamma_{\mathbf{x}}^{\mathbf{x}\mathbf{y}}}{\mathbf{r}} = 1.8 \; ; \; \gamma_{\mathbf{x}}^{\mathbf{x}\mathbf{y}} = 1.8 \; ; \; k_{\mathbf{x}}^{\mathbf{x}\mathbf{y}} = \beta^{1}b^{2} \; \gamma_{\mathbf{x}}^{\mathbf{x}\mathbf{y}} = 420 \times 16 \times 1.8 = 12100 \; \text{t/m}$$

$$\gamma_{xz}^{xy} = 0.48$$
;  $k_{xz}^{xy} = \beta b^4 \gamma_{xz}^{xy} = 970 \times 256 \times 0.48$   
= 120000 t/m

2. Apparent Soil mass

$$\frac{Cm}{r} = 1.8; \quad Cm = 1.8;$$
  
$$ms = \frac{\rho b^3}{ga} Cm = \frac{1.91 \times 4^3}{9.81 \times 1} \times 1.8 = 22.4 \text{ t-m}^{-1} - \sec^2$$

3. Apparent mass moment of Inertia of soil

$$\frac{C_1}{r} = 0.45 ; \quad C_1 = 0.45$$

$$I_s = \frac{\rho b^5}{12 g a} C_1 = \frac{1.91 \times (4)^5}{12 \times 9.81 \times 1} \times 0.45 = 7.2 \text{ t-m-sec}^2$$

4. Height of Combined C.G. of the soil and foundation etc.

$$\overline{Z} = \frac{4.35 \times 0.825}{4.35 + 22.4} = 0.134 \text{ m}$$

Design of a Machine Foundation : Shamsher Prakash and V.K. Puri

$$I_{ms} = \frac{1.79}{12} (4^2 + 0.5^2) + 1.79 (0.116)^2 + 1.84 (3^2 + 1^2) + 1.84 (0.866)^2 + 0.715 (1.66)^2 + 7.2 + 22.4 (0.134)^2 = 14.95 \text{ t-m-sec}^2$$

5. Natural Frequency in Sliding

$$w_{nx} = \sqrt{\frac{k_x}{m+ms}} = \sqrt{\frac{12100}{4.35+22.4}} = 67.2 \text{ sec}^{-1}$$
  
 $f_{nx} = 10.7 \text{ c p.s.}$ 

6. Natural Frequency in Rocking.

$$w_{n\phi} = \sqrt{\frac{k_{xz}}{I_{ms}}} = \sqrt{\frac{120000}{14.95}} = 90 \text{ sec}^{-1}$$
  
 $f_{n\phi} = 14.3 \text{ c.p.s.}$ 

7. Natural frequency in combined mode

$$\begin{split} w^{2}_{nx}\phi_{1,2} &= \frac{1}{2} \left[ \left( \frac{kx}{m} + \overline{Z}^{2} \ \frac{k_{x} + k_{zx}}{I_{ms}} \right) \pm \sqrt{\left( \frac{k_{x}}{m} + \overline{z}^{2} \ \frac{k_{x} + k_{zx}}{I_{ms}} \right)^{2} - \frac{4kx \ kxz}{m \ I_{ms}}} \right] \\ w^{2}_{nx}\phi_{1,2} &= \frac{1}{2} \left[ \left( \frac{12100}{26.7} + \frac{(0.134)^{2} \times 12100 + 120000}{14.95} \right) \\ &\pm \sqrt{\left( \frac{12100}{26.7} + \frac{(0.134)^{2} \times 12100 + 120000}{14.95} \right)^{2} - \frac{4 \times 120000 \times 12100}{14.95 \times 26.7}} \right] \\ w_{nx}\phi_{1} &= 3700 \ \sec^{-2}; \ w_{nx}\phi_{1} &= 60.8 \ \sec^{-1}; \ f_{nx}\phi_{1} &= 9.65 \ \text{c.p.s.} \\ w_{nx}\phi_{2} &= 9553 \ \sec^{-2}; \ w_{nx}\phi_{2} &= 98 \ \sec^{-1}; \ f_{nx}\phi_{2} &= 15.6 \ \text{c.p.s.} \end{split}$$

8. Amplitudes

$$Ax = \frac{P}{k_x \sqrt{\left(1 - \left(\frac{W}{W_{nx}}\right)^2\right)^2 + \left(2\xi \frac{W}{W_{nx}}\right)^2}}$$

Assume  $\xi = 0.2$ ;  $\frac{w}{w_{nx}} = \frac{21}{67.8} = 0.312$ 

$$= \frac{1.2}{12100\sqrt{(1-(0.312)^2)^2+(2\times0.2\times0.312)^2}} = 0.1\times10^{-5} \text{ m} = 0.10 \text{ mm}$$

$$A\phi = \frac{M}{k_{xz} \sqrt{\left(1-\left(\frac{W}{Wn\phi}\right)^2\right)^2+\left(2\zeta \frac{W}{W_n\phi}\right)^2}}$$

$$\frac{W}{Wn\phi} = \frac{21}{90}$$

$$= \frac{1.17}{120000\sqrt{\left(1 - \left(\frac{21}{90}\right)^2\right)^2 + \left(2 \times 0.2 \times \frac{21}{90}\right)^2}} = 1.02 \times 10^{-5} \text{ radian}$$
  
Ax $\phi = Ax + h A\phi = 0.1 \times 10^{-3} + 1.02 \times 10^{-5} \times 0.675$   
= 0.107 × 10<sup>-3</sup> m = 0.107 mm

### **Comparison of Results**

# Table VI

Pauw Richart Barkan Method 4.8 5.0 4.8 Natural frequency in sliding  $f_{n\phi}$  c p.s. 9.2 14.5 4.35 Natural frequency in rocking  $f_{n\phi} c.p.s.$ Natural frequency in combined mode 4.6, 10.8 3.5, 15.1 4.2, 6.0  $f_{nx\phi_1}$ ,  $f_{nx\phi_2}$  c.p.s. Amplitude in sliding  $A_x$  mm 0.08 0.1118 0.03 13.6×10-6  $\textbf{2.1}\times\textbf{10^{-5}}$ Amplitude in rocking  $A\phi$  radian  $1.77 \times 10^{-6}$ 0.0968 Amplitude in combined mode  $A_{x\phi}$ 0.129 0.0443

Example B

Table VII

| Method                                                                     | Barkan               | Pauw                  | Richart    |
|----------------------------------------------------------------------------|----------------------|-----------------------|------------|
| Natural frequency in sliding $f_{nx} c p s$ .                              | 8.5                  | 10.7                  | 13.4       |
| Natural frequency in rockin $f_n \phi$ c p.s.                              | 12.4                 | 14.3                  | 10.7       |
| Natural frequency in combined mode, $f_{nx\phi_1}$ , $f_{nx\phi_2}$ c.p.s. | 7.8, 17.2            | 9.65, 15.6            | 8.45, 16.9 |
| Amplitude in sliding $A_x$ mm                                              | 0.152                | 0.100                 | 0.120      |
| Amplitude in rocking $A_{\phi}$ radian                                     | $4.5 \times 10^{-5}$ | $1.02 \times 10^{-5}$ | 6.0×10-5   |
| Amplitude in combined mode $Ax\phi$ mm                                     | 0.182                | 0.107                 | 0.1605     |

134

Example A

# Design of a Machine Foundation: Shamsher Prakash and V. K. Puri

#### Conclusions

A comparison of natural frequencies and amplitudes obtained in the two design problems for typical foundation shows that these three methods give results which are sufficiently in agreement. The slight difference is due to assumptions made in particular type of analysis.

#### References

- 1. Barkan, D.D. (1962), "Dynamics of Bases and Foundation". McGraw Hill Company, New York, pp. 85-130.
- 2. Converse, F.J. (1962), "Foundations Subjected to Dynamic Forces", Foundation Engineering Edited by G.A. Leonards, ch. 8, McGraw-Hill Co., New York, pp. 769-825.
- 3. Gupta, D C. (1965), "A study of the Resonant Frequency of Machine Foundation Subjected to Horizontal Unbalance Forces", M.E. Thesis, University of Roorkee, Roorkee, August 1965, pp. 1-113
- 4. Konder. R.L. (1964). "Resonant Amplitude Response of Machine Foundation System on Cohesive Soils", Bulletin of Indian Society of Earthquike Technology Roorkee, Vol. I, No. 2, July 1964, pp. 1-13.
- 5. Konder, R.L. (1965), Characteristic Periods of Cohesive Soil-Foundation System'', Proc III World Conference on Earthquake Engineering (1965), Vol. I, pp. 75-80.
- 6. Konder, R.L. and B.B Schimming (1964), Footing Response Under Vibratory Loading", Bulletin of Indian Society of Earthquake Technology, Roorkee, Vol. I, No. 2, July 1964, pp. 15-25.
- Pauw, A., (1053), "A Dynamic Anology for Foundation Soil Systems", Symposium on Dynamic Testing of Soils, A.S.T.M. Sp. Tech. Pub. No. 156, July 1953, pp. 90-112.
- 8. Prakash, S. (1965), "Field Investigations for Machine Foundations", Symp. on Foundations of Power Houses and Heavy Machine Foundations, Poona, March 1965.
- 9. Prakash, S. and D.C. Gupta (1967), "Determination of Soil Constants for Design of Machine Foundations", Bulletin, Indian Society of Earthquake Technology, Vol IV, Nov. 1967, pp. 9-11.
- 10. Richart, F.E (1962), "Foundation Vibrations", Trans ASCE 1962, Vol. 127, Part I, pp. 864-925.