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COMPARATIVE STUDY OF PREDICTING NATURAL FREQUENCY OF
FOUNDATION-SOIL SYSTEM

A. Sridharan* and M.R. Madhav**

SYNOPSIS

Design of machine foundations where the loads are repetitional is complex and is
commonly met with by foundation engineers. Prediction of natural frequency of the founda-
tion-soil system is necessary since a major criterion is to design the foundation such that its

natural frequency lies outside the range of the operating frequency. The many factors
influencing the natural frequency are listed and a review of the well known methods of predict-
ing natural frequency presented. The influence of the various parameters and relative merits
of individual methods are discussed. Ford and Haddow’s method is recommended for its
simplicity and Sung’s for its rigorousness. |

INTRODUCTION

Design of foundations for machines where the loads are repetitional in naytui‘e, is one
of the usual problems met with by the foundation engineer. This problem is much more com-
plex than the design of foundations which support only static loads. Large machines are
usually supported directly on the soil in a manner that permits a direct transmission of these
periodic impulses into the soil, involving the study of soil dynamics. Review of literature
shows that considerable importance is being given to the study of vibrations of massive foun-
dations and to the study of exciting loads created by various machines since they are Qf great
importance in engineering practices. Vibrations of machine foundations are harmful to the
operation of machine itself and have harmful effect on the foundations themselves.

When out of balance machines are mounted on foundations built on the ground, the
problem arises as to whether resonance of the foundations can occur. When the natural
frequency of the soil foundation system coincides with the operational speed of the machine,
excessive vibration amplitudes might occur leading to structural damage or even failure of the
foundation.

It has been found that the natural frequencies of most foundation-soil systems are less
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than 30 c.p.s., consequently there isthe possibility of resonance occurring if the operating

frequency of a machine is less than 1800 r.p.m. Many machines, especially, stationary recip-
rocating machines, have rotational speeds less :an 1800 r.p.m: Prevention of resonance in the
machine foundation system is thus one of the major criteria in their design. Therefore it is
often required to design the machine foundation in such a way that the natural frequency will
lie outside the range of the operating frequency of the machine.

Most of the published literature is centred round the vertical vibration of the founda-

tion, generated either by a single blow resulting in free oscillations, or by continuously
applied sinusoidal force giving forced oscillations. Vibrations so generated are the ones

most commonly met with in practice.

The earliest approach to the problem of foundation vibration was made by Degebo

(1) by considering the vibrating system to behave as a single mass supported by a weightless

spring. As a result of their extensive series of tests, it was necessary to consider the spring
to have an effective mass. '

The second approach was to censider the problem as the vertical motion of an oscilla-
tor resting on a semi-infinite isotropic, homogeneous, elastic body. Most of the existing
works are based on either of these two approaches. Interesting review can be found in the
publications of Weil (1963) and Prakash and Bhatia (1964). It is the purpose of this paper to
examine and compare some of the well known works and discuss the relative importance of
various parameters affecting the natural frequency of foundation soil systems.

FACTORS INFLUENCING THE NATURAL FREQUENCY OF
FOUNDATION SOIL SYSTEM '

There are too many factors which influence the natural frequency of foundation soil
system to list them all, but the most important are (i) the static load which the foundation
carries (ii) the shape and size of the foundation (iii) the exiting force (for forced oscillation),

(iv) the type of contact pressure distribution (v) the depth of embedment of foundation
and (vi) the soil type. '

THE SOIL SPRING ANALOGY

The first approximation made in the study of foundation vibrations was.by considering
the system as a single mass supported by a weightless spring. Later, it was proposed that
a certain soil masx: underlying the foundation should be considered to oscillate together with
the machine foundation, in which case the natural frequency ‘f’ is given by

1 k.g

fn = S WMV W, | | (1a)
or fo = -] lAg (lb)

22N Wy + W,
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where, A s area of contact
k dynamic Spring constan
k' dynamic soil modulus
Ws  weight of soil actively participating with the oscillation or equivalent
‘ weight of soil. (It has no clear physical boundaries).
Wy  total static load.

g acceleration due to gravity

This leaves the designer the difficult task of estimating the dynamic soil spring constant
Kk’ and the value of Ws. No satisfactory method has so far been developed for the determina-
tion of these soil cosfficients.

Tschebotarioff and Ward (1948) modified the equation (1) and introduced a new para-
meter ‘Reduced Natural Frequency’ in order that the modified equation could be useful in
comparing foundation of different areas and subject to different pressures. An ampirical
relationship was established between the area of contact of the foundation and the parameter
‘reduced natural frequeney’ denoted as fur which bears the following relationship with fn :

far = fa X 4/P (22)
where p is the intensity of load. ' :
| VAT e
R .
ence fn 5 N WA (T W/ W) (2b)

In a later publication Tschebotarioff (1953) further confirmed the relationship between
area and fyy with some more data on the performance of full scale foundations. The relation-
ship between fu; and area is shown in Fig. (1).

Number of limitations can be cited for the above work. Tschebotarioff himself has
listed down some of them. The resulting lines in Fig. (1) are based on a limited number of
performance records and several inconsistencies can be noticed. Furthermore, both horizon-
tal and vertical unbalanced forces and their combinations were treated together. The ratios of
height to width of the foundations varied quite widely, and the natural frequencies determined

by scveral different methods. The plotting of results on a log-log scale is likely to mask the
actual behaviour The far vs. area relationship is independent of static intensity, shape of
the area of foundation, depth of embedment and the exciting force (for forced oscillations).

All these factors considered above are bound to affect the natural frequency and possi-

bly some of the factors may cancel with each other and some may be cumulative. However,

keeping constantly in mind, all the limitations and uncertainties involved the empirical rela-
tionship between fur and area established may still serve as a guide to help the engineer reaso-
nably, especially since the relationship is from valuable field records.

PAUW’S METHOD

Pauw (1953) assumes the stresses to be distributed uniformly and in an effective zone
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Figure 1

defined by a truncated cone or pyramid, the sides of which slope away at ‘an angle whose
tangent is a/2. Further the modulus of elasticity is assumed to be constant for cohesive
soils and proportional to the effective depth for cohesionless soils. Thus

E; = B(h +2z) )(for cohesionless soils) | (3a)
and  F, = E, v (for cohesive soils) ‘ (3b)
where, E, is the modulus at any depth z,
B rate of increase of modulus with depth,

Intensity of static load
unit weight of soil

h equivalent height =

Fo  modulus at the surface.

~With these assumptions the spring constant is determined by integrating, over the depth of
“the pyramid, the displacement of each infinitesimal layer due to a given load on the foundation.

The equation for equivalent weight of soil oscillating with vibration has been derived
by equating the kinetic energy of the affected zone to the kinetic energy of a mass assumed
to be concentrated at the base of the foundation. Substituting the values for spring constant
and equivalent weight of soil in equation (la) the natural frequency can be found. The
various parameters considered by Pauw are (1) shape and size of foundation, (2) “the load
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dispersion angle or the slope of . the pyramid, (3) the density of the soil, (4) the soil type
represented by B and (5) the intensity of static loading. The use of this approach does not
require the soil to be homogeneous.

In order to use the above method one must know the rate of increase with depth and
value at the surface of the modulus of elasticity and the value of . No satisfactory method
has been recommended to obtain the value of 8 and ¢.  According to this anology the value
of ‘k’ increases with the static intensity which is not in conformity with the existing knowledge.
The modulus of subgrade reaction ‘k’ (i.e. spring constant) reduces as the static load increases.
Another limitation of this method would be the non-convergence of the infinite integral to a
finite limit for the determination of the equivalent soil mass in the case of cohesive soil.

SUNG’S METHOD

Reissner (1936) presented an analytical solution for the vertical motion of an oscillator
resting on an elastic homogeneous isotropic semi-infinite continuum. This analysis assumes
the vertical periodic, pressure forces to be uniformly distributed. The resonant frequency,
amplitude of oscillation and power requirements of the vibrating: soil system were determined
as functions of radius of loaded area, static weight of vrbrator Werght and frequency of the
vibrating mass, and material properties of soil.

Sung (1953) and Quinlan (1953) have extended- Rerqsner s treatment to cover different

contact pressure distributions between the oscillator and elastic body obtammg essentially the
same results. g ’

Sung (1953) has considered three different axially qymrhetrica] pressure d_istributions i.e.
uniform,  parabolic and that produced by a rigid footing on a clavey soil. The basis of the
Sung’s theory is Navier’s displacement equilibrium equations neglectmg dampmg The various
parameters considered by Sung are (1) the radius Y, of the loading area, (2) the total mass mo,
(3) the amplitude of dynamic force applied, (4) the distribution of contact pressure on the
base, (5) Poissons’ ratio, #, (6) mass density p, and (7) shear modulus G “of the foundatron
material. The results of analysis are presented graphically, with the dlmensronless maximum
amplitude and dimensionless frequency at maximum amplitude plotted against ¥, the Poisson’s
ratio for different values of ‘b’ (a significant parameter referred as the mass ratio) for all the
three pressure distributions ana]yzed

In order to adopt Sung’s method the designer must know among other things, the
shear modulus G, Poisson’s ratio u and the type of pressure drstrrbutlon Indeed Sung sugge-
sts small scale dynamic tests to find the soil constants and the type of pressure distribution.
An uncertainty introduced by the Sung’s approach pertains to the type of preSSUTe distribution
involved which is significantly affected by the magnitude of oscillating force and the static
intensity Weil (1963).  Sung also makes a ‘questionable assumiption that ‘the shape has no
influence on ‘fp’.
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FORD AND HADDOW'’S METHOD

Ford and Haddow (1960) have suggested a simple method of predicting the natural
frequency of machine foundation based on Raleigh’s principle. In this method the maximum
strain epergy of the system has been equated 1o the maximum kinetic energy of the system
to derive an expression for the natural frequency.

Further, the dynamic stress at any depth 2z’ is uniformly distributed over a section of
the solid, parallel to the “x y* plane that is, parallel to the base of the foundation and the
Whole‘system has been considered as conservative.

With these assumptions and usimg Raleigh’s principle, Ford and Haddow arrive at the
expression for natural frequency.

/E" B ab

12G (1+u) B" ab ‘
NI o
27 B ,
where, M = mass of the foundation and machine
P = mass density of the soil -
‘a,b = two sides of the foundation block
E’" = dynamic modulus of elasticity of soils
B’ = s the decay factor which is defined from
Wo=Wos C—BI 2 ’ (5)
where, Wor = amplitude of vibration at the surface,
Wo = amplitude of vibration at a depth z.
The decay factor g’ is given by an expression
' B :
vy wiEoy - (©)
where, B = a soil constant (varies between 1.5 for clays and 2.0 for sands).
m’ = shape factor -—— a constant
A = area of foundation
# = Poisson’s ratio

To adopt this method in practice one must know the sojl constants such as E’ or G,u
and m’ from dynamic tests.

Among other things the expression for the decay factor forms an uncertainty. How
far this expression is valid for sojls needs confirmation. Though uniform distribution of dyn-

amic stress is inaccurate, any other form of assumptions will make the analysis further com-

plex with a 'negligible gain in accuracy. This procedure also neglects the losses such as
damping. ' o

)

pu
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DISCUSSION [T ;

In the foregoing paragraphs four well known methods of prédictiﬁg the natural fr;qu--
ency of foundation soil system have been presented. None of these methods considers all the
parameters which have been listed eartier in this paper which affect the performance of an
oscillator. One or more factors have been ignored by each method giving importance to

~ other parameters. A study of the influence of each parameter as given by each method and

a comparison between these methods will certainly help in better understanding the vibrations

of foundation soil system.

The authors have computed the values of ‘fy’ and “fuor’ using the above three analytical
methods, for a set of foundations of different shapes and sizes and for different values of G,
i, B, B, a, p and different types of pressure distribution, to compare with Tschebotarioff’s
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empirical relationship. For the purpose of comparison, suitable values for the soil constants
such as G, &, 8, B and the physical properties of foundation soils have been assumed and the
fn and for have been evaluated. These parameters have been varied quite widely and only

limited results have been presented for conciseness. The values used for various parameters

have been given in each figure. The following relationship between 8 (Pauw) and G has been
made use of to have comparative values in all the three méthods.

Eo = B(h) .. (Z being zero)
= 2G (1 + n)

or B (%): 2G (1 + n)

01',8 =~ MZG(lp—;— H\P

where p is the unit weight of the soil in Ibs/cft.
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~ All the thrcef:-“methods i.e. of Sung, Pauw and Ford and Haddow consider the influence
of laod intensity on the natural frequency. = Itis an accepted fact that an increase in the
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intensity of loading decreases the natural frequency. Many published records (East Wood
1953and Ford and Haddow 1960,) show the static intensity to have a great influence on naturaij
frequency and that the natural frequency decreases to an extent of 50 to 60%,. Fig. 2a and 2b
show the relation between static intensity and the natural frequency for two extreme areas of
contact. The rate of decrease of natural frequency with load intensity is almost same for Sung
and Ford and Haddow methods whereas Pauw’s method in contrast shows a neglegible decr-
ease in fn with increase in intensity, It is wainly due to the questionable assumption that ‘E’
increases with intensity of static loading. The effect of Area on ‘*fy’ for three different methods
is chown in Figure 3. It can be discerned from the same that at smaller areas the difference

between Sung and Ford and Haddow methods is considerable which decreases to a negligible
value as area increases.

The effect of intensity on far is considered in figures 4a, 4b, 4c and 8. - Tschebatorioff ’s
empirical plot exhibits that fy; is not affected by the intensity. Sung’s method also shows
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that the intensity has no effect on fu: for all the three types of pressure distributions and Ford

and Haddow’s method shows a slight increase in fur with intensity at smaller areas, increasing

for larger areas. The difference in fur for various intemsities increases with area by Ford and
Haddow’s method (Fig. 4c) and this is always much less than that shown by Pauw’s method
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(Fig. 8). The fm mcreascs mgmﬁcantly thh intensity for all areas of contact in Pauw’s
method- whrch is not conststant with Tschebotarioff ’s plot and the other two methods. ' This
marked dxﬁ'erence in the behaviour is mainly due to the basic assumption _ that ‘E’ increases
thh stauc 1ntens1ty, as stated earlier.

" The influence of | shape has been taken into cons:deratlon by Ford and Haddow and
Pauw s-metheds-only- - The other two methods ignore the shape effect.~ R

i

&

Table I shows the effect of shape on for. There is a ' general agreement between the
Pauw and Ford and Haddow methods to the extent that the for increases with ‘the change in
shape from circular to- rectangular. The increase in fur is:in the range of 6-12 % being larger
for larger areas. With the complex1ty in the bchavxour of subgrades under dynamic loading
and other vagaries in asseSSmg ‘values for the parameters differences of less than 10 7 are
unimportant.Hence considering all factors' it can  be said that the shape of the foundation
,block has .neglegible. eﬂ‘ect on fm and fn of the system..

e P
@ S . : oo il

Figs, 5a and 5b showthe mﬂuence of u on f, for two different areas: The Sung and
Ford and Haddow methods show consistent increase in fn or fur and the effect .of smalj change
‘ln u‘ on fn or; fnl' IS rﬂheﬂomcnal dai wi R . , Sale \ Yo R i 'aﬂ \ "‘ f.- it g ‘:,""‘}3"n- i
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" Fig. 6 demonstrates the-effect of different types of pressure distribution on far. This
clearly brings cut the necessity of the true knowledge about the pressure distribution if Sung’s -
method is to be adopted. For larger areas the effect is not marked. |

Fig 7 exhibits the effect of B values on fn. The increase in the values of fn with B
is obvious and the effect of ‘B>-on fn is phenomenal. Larger the value of B, the more will be
the percentage increase of fn with area. This necessitates proper judgements in the values of B.

- Fig. 8 illustrates the effect of ‘e’ the dispersion angle, in Pauw’s method on for. A
decrease in a from 1.75 to 0.875 reduces far to an extent of about 35);. In the absence of a
positive method to determine the value of o the assessment of o from experience and judge-

ment may pose a difficult problem.
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Fig. 9 shbws the relation between 4/G or /8 with fnr for three different areas. Since
fur is directly proportional to 4/G or 4/B a straight line relationship is obtained. It is rather
interesting to note that all the three methods i.e. Pauw’s, Sung’s and Ford and Haddow’s
derive the expréssion for fn such that the influence of p, shape, size, u, B, a and type of
pressure distribution is not at all affected by the value of G or 8. In other words, for example,
the rate of decrease of fn must be same either for a clayey soil or a sandy soil irrespective of
their values of G or 8. Experimental conﬁrmatlon is essential to this effect.

Fig. 1 shows the relation between fur and Area for two limits of G and 8 values, for
“"all the three methods. ~ Tschebotarioff s boundary lines i.e. line for sand stone and line for
peats have also been included in the plot. The values of G and 8 were chosen such that they

represent the extreme limits for soils. The values for other parameters are also given in the

figure. Since the influence of these parameters has been shown earlier, the readers can easily
.imagine the effect of the possible changes of these parameters in shifting the lines. It is seen
that there is a basic agreement between all the four methods especially with Sung’s and Ford
and Haddow’s and Tschebotarioff ’s plot. The intensity of load for this plot has been taken
- as 2000 Ibs./sq.ft. A-change in the value of load. intensity alters the position of Pauw’s
boundary significantly, Ford and Haddow’s neglegibly and Sung’s none at all. It is evident
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. from this.illustration that Tschebotarioff 's plot almost fixes up the boundaries of danger zone
for the occurrance of resonance in. machine foundations.

'CONCLUSIONS

"From the above- comparanve study, the followmg conclusions can be drawn for founda-
tions subjected to vertical OSCl“d[lOH h

With different basic approaches Sung’s and Ford and Haddows melhods show a
similarity with Tschebotarioff ’s plot between area and far.
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Ford and Haddow’s method is recommended for its simplicity and Sung’s for its rigou-
rousness if the type of pressure distribution is known.

Owing to the complex factors involved in the design of foundations subjected to verti-
cal oscillating forces it is hard to expect, any single method to satisfy all the requirements.
Hence Sung’s and Ford and Haddow’s analyses may be applied for any problem and the pro-
bable value judged on individual merits.
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) o TABLE 1
' Valucs of Natural Frequency for different shapes and sizes o
p = 2000 Ibs./sq. ft. B = 150,000, G = 600,000 =25
B =20 a=T1.0 "=
¥.='Ratio of Length to Bregdth. = .
Pord and Haddow ' Pauw

Sl Area . — e
No. - CerU]ar 'y—l...:, 'y 2 - ¥Y=4  Circular . y=1 =2‘ Y=4
Lo 16 O 1064 1068 1085 - 1128 900 910 924 940
2 100 636 644" 660 686 95 605 617 631
30400 414 M9 8448 444 42 462 - 47a
4 1600 254 259 267 280 326 334 343 353
5 4900 166 170 173 . 184 . 263 270 278 . 288
6

6 10000 124 126 120 132 22 229 237 24T
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DYNAMIC RESPONSE OF RECTANGULAR PLATES ON ELASTIC FOUNDATION

P.C. Sharma*

‘SYNOPSIS

Navier type solution for the dynamic response problem of rectangular plates, simply
supported all arround, is presented here. Case of a plate supported on Winkler type founda-
tion and also baving damping, is considered and solution obtained. The solutions thus obtai-
ned can be useful in the dynamic response analysis of more complicated cases.

INTRODUCTION

The dynamic theory of plates finds many applications in modern .technology such as

~ the analysis and design of , buildings, aircrafts, ship hulls and pavements. Except for afew

exceedingly simple cases, an exact mathematical analysis of such problems is practically im-

pdssible This is even more so for the case of plates on elastlc foundation which is important
for example in rigid pavement design.

* From engineer’s standpoint, both frequency and displacement are: significant: quantities.
Bendmg moment responses can be easily obtained from displacement responses. Therefore 1t
is 1mportant to get the’ dlsplacement response.  Unfortunately not much is found’ under

dvnamlc response of plates, ‘even for simple cases where the solution is straight forward. Smce
engmeers do not have time to devote to routine mathematical mampulatlons and derxvatlons,

it is of some significance to have these results available. Therefore the purpose of this paper
is two fold: Cee : o

—

1. To demonstrate the use of Navier’s method of analysis for dynamic response
problem;
2. To make available a few basic results which can be of furthcr use “in the dynamrc

Y
R

response analysis of plates on elastic foundation.

DIFFERENTIAL EQUATION

The governing differential equation for the small deflections .of an elastlc thm plate
subjected to a lateral loadmg q (x, y) is given by: Co

2 84 : 84 . ( ) . ,. o
4 —_— = ________Q X,y
V2o .‘._ — + P + T = | N (1)

*Reader in Civil Engineering, G.Q,-Vt'- Engineering College, Jabalpur, Indis.
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in which w is the diflection, x, y are space coordinates and D is the flexural rigidity of the
plate. (see fig. 1)

Q(x. yJ) load intensity

A
X
A - fe o= aw w ww ow anen @ - e
///"h--—cn—--——— -
) /
//// | '
’ / 4 t My
: v
S A o
e ( " Q
y 4 ~ )
(
v M t!

Q,dw 2 middle plane displacement
¢ .
_®

Figure I Plate Notation

For the case of dynamic loading and Winkler type elastic foundanon with viscous

2 o
dampmg, the quation of mo'lon is obtained by replacing q (x.y) in Equatnon 1 by (m-a—t@ +

ch ~+kw) + P (x,y, t), where m gt is the inertia force and c—él— + kw is the reaction of

the founddtmn including the effect of viscous damping. Also, P (x, y, 1) is the forcing function.
Thus Equation 1 tecomes:

kw . € e 0w P(x,y, 1) '
4 =2y 8 e = ot Y (2
w + +5 et me P 5 (2)
This equation together with the appropriate boundary conditions governs the dynamlc respo-
n e of the plate system to the dynamic loading P (x, Y, b).

Mathematically speakmg, this partial differential equation is of the parabolic type, and
is referred to as a propagation problem in two space dimensions. The solution “marches”
in the time domain startmg with the mmal conditions and confined in space by the" boundary
conditions. In other words, for the case of rcctangular plates, considered in this paper, the
solution has to march inside a box (as shown in Fig. 2) whose base is made up of the initial
‘co'nditions and all the four sides are made up of the boundary conditions, the top being open.

NAVIER TYPE SOLUTION

The double sine series solution of the probl’ém of forced vibration of a simply suppor-
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Figure 2 Pictorial Representation of Propagation Problem

ted rectangular plate on an elastic foundation is presented here, which is based on the Navier’s
solution for the static case. Referring to FEquation 2 the solution using the technique of
separation of variables, may be written as:
W= o§ 020 Sy Ty (3)
i=1j=1 v _
.

where Sy = Sin —~ _Sin’
a b

and Ty is a function of time. only. Also assuring the

loading function be given as :

P(x,y,) =G (x,) F (1) o | 4
where G (x, y) is a function of the space coordinates ‘x’ and ‘y’ only and F (t) isa function
of time ‘t’ only.

Let G (x, y) be expanded in a double sine series: .,

G(x,y = o§ ;p g1; Sin X _ Sin 'Ebv—- ' . (5)
i=1j= a N
in which ab . . o
gy = 4 /f G (x,y) Sin =X Sin STV dxdy (6)
ab 00 .a i b

Substituting the preceding éxpressions 3, 4 and 5 into the equation of motion (Equation
2), the following equation is obtained

4 4
@ @w 37_1' ' 2(i7-r)2(j7r)2 (jﬂ-) _k c -' I_I} .o .
.__fl jz_: : [( a ) Sy Ty +——5— SuTy+{ § ) SuTut+gSuTutg $13T11+D Sy Ty

‘%~&Fm}=o | %)
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Since 8y is not identically zero, one obtains :
.. . 2 ’
Ty +2r Ty + py Ty — BLF () =0 @®)

where r = 2%1 and pyy is the natural undamped circular frequency of the (i, j)® mode of the

plate :

o ) BT . e

For the case of zero initial displacement and velocity the solution of Equation 8 may be
written as :

Ty =-S5 _ ftF (T)ﬁ“T(FT) Sin qy; (t—7) d= (10)
: mqy |, :

in which qy; is the damped natural circular frequéncy given by
qy= Vphy — 1 - : : | - (1) .
the ““Critical damping”’ cer for the system can be obetained by setting q%;=0 thus— :

wir-2 [ SO o

It may be observed that the factor inside the bracket shows effect of the flexural rigidity

of the plate and the mode shapes ( value of i and j ) or the value of the critical damping for
the (i, j)® mode. ‘

For any given loading the solution can be obtained from Equation 3 by use of Equation
6 and 10. ' '

_ _ . |
1. Triangular Pulse Loading—1In this case P(x,y,t) = P.(1 — T) Is constant over the
1 .

T

entire place and taking r=0 (no damping), for a square plate Equation 6 yiclds—

_16P
&= '”T'J
Equation 10 yields—
16P T, o
wzmijp"’ij({ ( 1 ) Sin py (t—) d
16P -t Sin py t .
. J——— —_—
7tmyy p2y < t Cos put+ t; py )
Finally substituting into Equation 3 one has
- 16P o @ t  Sinpyt ] X o Ay
W(x,y,t)= — D I I R LLu i L Sin— Sin
& 7*m if-.l J=11 Pzn[l t tipyt Cos pu t |Sin a T

fort < t, : (13)
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2. Partial loading—The loading is the same as preceding one except that it is applied
over an area uxv whose centre is located at (£, 7): In this case Fouation 6 yields—

16P . im jmn . iwu jmv
B = 2% uv Sin =3~ - Sin =g~ Sin 5.~ Sin 2b

When the load is concentrated, i.e. u, v=0 and P. u, v, —F (a constant), the above equatlon
yields.
' 4F mg jnn ‘
g = - Sin — Sin 2 | : . (15)

complete solution can be written as before

3. Rectangular Pulse—The load P is applied over the plate. In this case the effect of
the foundation damping is also included. From Equations 6 and 10 one obtains respectively—

16P
g1j e [16 (a)]

_tep LT
16P 1 - etr . |

7o "2+q211'{1_ —— ( r Sin qy t-+q1y Cos qiyt )} [16 (b)]

The complete solution is glven by Equatlon Jas:
16P ®© © r :
Y, ) = S8 e | l—e (i 4-Cos
v ().( d ) m7® 7 5=1 ‘J(T2+q2u) [ © (Cm n qy to+Cos qut) :I
sin "% sin - Forallt > 0 and cyy< cor G, j) 16 ()

NUMERICAL EXAMPLE

As a numerical example. a simply supported concrete slab 12'x 12"x 1’ (B=2x 108 psi) .
resting over firm soil (k= 614.4 1bs/in® and ¢=0) is considered. The first fundamental period -
(i=1,i=1 for such a plate is found to be .0093 sec., using Eq. 9 and similarly the value of
crit'cal damping for the first mode is found to be cer (i, j) = 3.51 Ibs/in%/sec. It is of interest
to note here, that the first fundamental period of the plate corresponding to the first mode

(i=1, j=1) for k=0, c=0is 1.405 times larger i.e. it is .01335 sec. Hence the effect of foun-
dation stiffness is to reduce the period which follows also from mass-spring analogy.

The centre point response is shown in Fig. 3, for the case of a rectangular pulse loading

of magmtude 10 psi acting uniformly all over the plate (t;=0) and for k=614.4 1bs/in® and
¢=0. In the same figure is shown the response curve for same ‘k’ value but ¢=3.50 (slightly

less than the critical damping for the first mode)., It may be observed that the influence .
of damping in reducing the magnitude of centre point response is quite pronounced. It may
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Figure 3 Centre Point Deflection Response

further be noted that for value of ¢=3.5 Ibs/in%/sec, the dynam1c response approaches the |
static response (centre point static deflection=.012971 in.). This would point to the possibility

of obtaining static solutions by use of dynamic analysis (“pseudo dynamic approach”),

CONCLUSIONS

Navier type solution is convenient and straight forward for solving dynamic response
problems of simply supported  rectangular plates However if the boundary conditions are
other than those described above this solution will not be a suitable one as is true for the static

analyels also.  Here the vertical reaction of soil has been taken proportional to displacement

at that point only which is only an approximation. To consider complex behaviour of soil
numerical methods may be used. ' o
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APPENDIX
NOTATIONS
a=Ilength of the longer side of the plate;
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b=Ilength of the shorter side of the plate;

c=foundation damping coefficient;

- cer (i, j)=critical damping for the mode (i,j);

D=Eh?/12 (1—v?), flexural rigidity of the plate;

E=modulus of elasticity of the plate material;

F(t)=time dependent part of the forcing function P (x,y,t);
G(x,y)=space function part of the forcing function P (x,y,t); -
gyy=Fourier coefficient for G (x,y); - '

h=plate thickness; ‘

i,j=variable subscripts to denote number of terms in the infinite series;

k=foundation stiffness constant;

m=mass per unit area of plate;

P=magnitude of forcing function;

P(x,y,t)=forcing function;

" py=natural circular frequency (undamped) of the (i, j)'* mode of the plate;

qu= A/ pzijérz, damped natural circular frequency corresponding to the (i, j) mode;
q (x,y)=static loading function acting over the plate;

c . .
r= 5—, Viscous damping parameter;

Syy=Sin -1—7:(— Sin JW\byspace;function;

Tiy=time function;

t=time;

t,=duration of loading pulse; ‘

‘u=width along x coordinate direction of the partially loaded area;
v=width along y coordinate direction of the partially loaded area;
w=deflection of plate;

X=space coordinate;

y=space coordinate:

A*=biharmonic operator;

£=x coordinate of the centre of loaded area;
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7=y coordinate of the centre of loaded area; and
v=Poisson’s ratio. :
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