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- THE EFFECT OF ROTATORY INERTIA AND SHEAR DEFORMATION

ON THE VIBRATIONS OF BEAM ON ELASTIC FOUNDATION
Y. C. Das* and G. N. Harpert

Summary

A theoretical analysis of the effects of transverse shear and rotatory inertia on the
natural frequencies of a uniform beam on an elastic foundation is presented, Equations for
frequencies and modes are derived for six combinations of simple end conditions. For the
case of a fixed—free beam on an elastic foundation numerical results are presented in the from
- of curves giving frequencies in terms of the parameters for shear deflection, rotatory inertia,

and foundation modulus.

Introduction

It is well known that the classical, one-dimensional Bernoulii-Euler theory of flexural
motjons of elastic beams is inadequate for the study of higher mod:s of beams, as well as for
the modes of beams for which the cross-sectional dimensions are not smalil when . cmpared to
their length between modal sections. Rayleigh (1) introduced the effect of rotatory inertia and
Timoshenko (2,3) extended the theory to include the effect of transverse shear deforir.ation.
Others who have contributed to an understanding of the importance of these effects are :
Jacobsen (4), Searle (5), Kruszewski (6), Sutherland and Goodman (7), Anderson (8), Dulph
(5), Minclin and Deresiewicz (10), Herrmann (11). and Huang (12, 13). E

The square of the frequncies of a beam on an elastic. Winkler-type fundation can be
obtained from the square of the frequencies of beam in vocuo by adding a suitable founda-
tion parameter (14). This is not possible if the effects of shear deformation and rotatory
inertia are introduced into the classical theory of vibrations of beams on elastic foundation.
A. L Tseitlin (15) has considered these effects on the vibrations of beams of infinite length
on an elastic foundation. The present paper deals with frequency equations and normal modes
of flexural vibrations of beams of finite length on an elastic, Winkler-type foundauon, inclu-
ding the effects of shear deflection and Totatory inertia for various cases of simple end
conditions. Solutions are obtained for total deflection and bending slope. The frequency
and normal mode equations are derived for sjx common types of end conditions, A numerical
example is given for fixed-free end conditions.

Statement of the Problem

The differential equations of motion for a beam on a Winkler-type foundation with sheas
deformation and rotatory inertia taken into accouat are of the from : :

2 Ty 02
Bl + ka6 (- y)- % M
yA 9%y ( a=y_a¢) -
g‘ 5t — kAG a._XT ax + Ky 0 (2)

where
E = modulus of elasticity
G = shear modulus of elasticity
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= area moment of inertia of section

== Cross-sectional area

== weight per unit volume

= numerical shape factor for the cross section
== coefficient of the foundation

y == total deflection

¥ = bending slope

AFR > o=

Eliminating y or ¢ from equations (1) and (2), one obtains the following two

uncoupled equations in y and

4 2 4 2 4
pri% _BIK %4 ¢yl EI y\ 0% +(7’A+'__?’K o L Y 3, ¢

ox4 kAG ox% ?+gk G /) ox%oe gk AG Jg? g gkG g’
yo'y _ EIR 2% _ _+§_I_y_ oty__ ‘(A Iy K \ow Y1 v 3y Y 4 Ky~
ox' ~ kAG px® gk G ax2at2 gk AG/g® " g ¢kG ot

The shear slope, moment and shear are given by:
Shear Slope ; ¢(x,1) = gy———-

Moment ; M (x, t)= —EI gl’i

Shear: Q (xt) — kAG (g—i- - ¢)

For the simplest end configurations, the boundary conditions are the following:
Hinged End; y = 0 and g% =0
Clamped End; y = 0 and zﬁ ==

Free End; g‘ﬁ 0 and — =

Frequency Equations and Modal Forms

Let us take the solutions of equations ( l)'toy (4) in the form
Yy (x, ) =Y (&) elrt
p(x, t) = P (§) elpt
with
£E=x/L
where
i =4/—1
p = angular frequency (restricted to real number)
L = length of the beam

Kip=0
(3)
(4)

(%)
(6)

(7

(8)
9N

(10)

an
(12)

(13)
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Omitting the factor elpnt,

vd4

$2 9" — (1 — b%2s%) ¢ 4+ T =0 : (14)
Y+ 2b*—~qQY~L¢ =0 (15)
P+ [b2 (1% + s%) — 52q) 9" — [b2 (] — b 2 89 — q(l —b2r2s2)]e = ¢ (16)

YV 4 [b2 (r? + s%) — s?q] Y" — [b% (1 — b2r2 $*) — q(1 — b2 r2 Y =0 (17)
where

b= g P iepe | (18)
= Aiz B (19)
s = E;—A—ELL? ' (20)
9= KEIf 2n

The dimensionless parameter b s directly related to the frequencies of vibration, p Tre
dimensionless parameters r.s, and q are measures of the effects of rotatory inertia, shear
deformation, and the elastic foundation, respectively. Solutions of equations (16) and (17)
may be found to be o ,

Y = Cicosh af + C,sinh af + C; cos BE 4 C,sin BE | (22)

? = C'i cosh of + C’ysinh af + C', cos BE + C, sin BE - (23)
where . . _ .
/2

"= %[{“’2 (1 — s%) + s%q]* + 4 (b2 — q) } - {bz (1 + %) — s%q }] " 0

2

1/ 1/2
B = # {[b2 (r? — s%) 4 s3] + 4 (b? — q) } +{b2 (12 + 5% = siq H (25)

The eight constants ip equations (22) and (23) are not all independent, but are rzlared by the
equations (14) or (15) as follows ¢ '

o =‘{a2+521(32—m }C’ S @)
= Tl | "
G = - Pleo o
C, = {82 (b* 1;) - ?2 }Ca - :‘:‘(30)

It should be noted that the solutions in equations (22) and (23) apply only under ,fhe
the conditions

; [b2 (1 — 5% + s%q]* + 4 (b*—q) >0 (26
an i

b (1 — &) + s3] + 4 (b* — Q)}2 4 [b2 (12 4 &) — s*q)> 0 (26b)
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Tnequality (26a) is essentially a requirement that « and P shall not be complex. If
inequality (26a) is violated, frequencies for the boundary conditions given later become
complex. Since onlv real frequencies are physically of interest, b will always be chosen such
that both the inequality (26a) and the frequency equation for the particular boundary condition
are satisfied. :

With b chosen so that (26a) is satisfied, (26b) requires that a and § be real. Violation
of (26b) means that either o or B bscomes a pure imaginary. (The forced satisfaction of (26a)
precludes a and § becoming imaginary simultaneously). [Itis still possible, however, to have
real frequencies, even with « or § imaginary. Suppose that either a or § becomes imaginary;
equations (24) and (25) then become ‘

i 1/2 12
: [—— {[b2 (r?*—s?)+52q]® +4 (b%2—q) } + {b2 (r24-s?%) — szq}] =ja (24a)

a = —\—/7
or

i s e 12 12 .
B = W[ —{ [b? (r®—s?)+s2q]*+4 (b*—q) } +{b2 (r* + s —s? q}] =iB (25a)

Substitution of either a or  according to (24a) and (25a) in equations (22) and (23) then
gives the solutions in terms of the real e’ and B :

For a imaginary
Y=Cicosa £+ Cysinat + Cycos P& + CysinBE (22a)
P=Cicosa &+ Cysina §+C3cosB88+ Cysinft (23a)
and for 8 imaginary ,
Y =CicoshaZ + C,sinha £ + C; cosh B E -+ C;sinh ¢ (22b)

®=C'1coshaf 4 Chsinhaf + Cycosh B £ + C' sinh B’ £ (23b)

where again the eight constants of (22a) and (23a), as well as (22b) and (23b), are related
through equations similar to equations (27 — 30).

For the homogeneous boundary conditions described by equations (8), (9)and (10),
only the ratios of constants C;, Cy, C3 and C, or C;, C,, C';. and C’, are determinate.
Application of any combination of the boundary conditions leads to the characteristic frequency
equations The roots of this equation are the frequency values, b, for which a nontrivial
solution is valid. For each value of b, there is a corresponding natural mode.

The frequency equations and natural modes are given below for six common combina-
tions of the boundary conditions (8), (9) and (10). In all six cases it has been assumed that
the solutions to the differential equations (16) and (17) are those given in equations (22) and
(23). As mentioned above, however, violation of inequality (26b) will change the form of
the solution to that given in (22a) and (23a); the « and 8 of equations (24a) and (25a) should
then be substituted into the frequeacy and mode equations given bslow te obtain the real
- frequencies and modes. An example of this substitution for the fixed-free beam, Case 5, is
contained in the numerical problem. Frequency equaitions and natural modes are now given
for the followinng six support conditions.

Case (1) : Clamped at £=0 and £=1.
Frequency equation is
sin B=0" 31)
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and natural modes are
Y=sinB g
P=cos B £
Case (2) : Hinged at £=0 and £=1.

The frequency equation is

172—{_,3‘ \ )
2—2coshacos B-— (—772; — )sinh a sin =0 .

and the natural modes are

cosh a-—cosf
¢ sinh a+7sin B

Y =cosh af —cos £ —{ } (¢ sinh a£+7 sin BE)

cosh a—cos § . .
== £ — _ —_
P=cosh af —cos % {?7 sinh a—Tsin [3} (7 sinh a£—{ sin G§)
where '
- (s2 (b2—q)+a?)
) KR
_ {2 (b —q)— B
- B

g

Case (3) : Free at £ =0 and £=1.

The frequency equation, in this case, is

gBZ na!

2—2 cosh a cos B_{Ez—iﬁ—?

}sinh a sin B=0
The natural modes are

Y=UB cosh a£—"7a cos BE — {Zzzgs{igﬁozig’[—;(;?; [é)
na? sinh @ + {B% sin

a8 (cosh a — cos )

}. (a sinh a&+( sin BE)

®="%a cosh ag—\gp cos B — { } (8 sinh a§ — a sin B£)

Case (4) : Clamped at £ — 0 and hinged at £ =1.
The frequency equation is

;?—tanh.a + tan B =0

The natural modes are

Y =cosh a§—cos &~ {ZZ(zossi:;ha a—-—l— %3 ;zsg)}} (¢ sinh »¢ + 7 sin BE)

?= 7 sinh af — { sin B§ — {Z::Ehaa_—cg:l; B} ( cosh a§ — cos B% )

(32)
(33)

(34)

(35)

(36)

67

(38)

(39)

(40)

(41)

(42)

(43)

44
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Case (5) : Clamped at £ = 0 and free at & = 1.
The frequency equation is

an 2~ a?\ . .
{B_E +I¢%} cosh a cos B + (‘ of : ) sinh a sin § — 2=0 (45)
The natural modes are
| - v __J Bsinha — a sin B . i ar 46
Y =cosh a£—cos . pg, £F cosh @ = a7 cos B ({ sinh af 4 % s@ f2) (46)
) si - asinp . A
¢ =cosh a&—cos p — {m"ci’s‘;ha"jg‘i :s' 3 } (n sinh aZ—{ sin BE) (47)
Cose (6) : Hingeg at £=0 and free at £=1.
The frequency equation is
2
gg—z tanh a + tan B=0 (48)

The natural modes are

7a® sinh a + {82 sin B
7g a8 (cosh ¢ — cos B)

Y=a sinh of 4 B sin B + { }!,QB cosh «£—70 cos ) (49)

ma®sinh a 4 162 sin A o ;
§ £ —asi 50
afd (cosh a — cos f) } B sinh ag - a sin ﬁ) €50)

®="7a cosh a€ — B cos BE+ {

Numerical Example

Inspection of the frequency equations (3D, (34), (39), (42), (45) and (48) for the six
common combinations of boundary conditions presented above indicares that coosi=
derable study and labor is entailed in the solution of each of the equations if roots are to be
computed for various combinations of the parameters s, r, and q. Further, the desirabslity
of a graphical presentation of these roots is evident, if the quantitative effects of shear,
rotatory inertia, and elastic foundation are to be easily comprehended.

As a particular numerical example, the first four frequencies for a clamped-free beam
(Case 5) have been computed from the frequency equation (45). A ratio of E/G=8/3 and a
shape factor k = 2/3 have been assumed. Under these assumptions, s = 2r; and the variables
a, 8,7, and { become functions of the rotatory inertia parameter. r, and the foundation
parameter q. Accordingly, the frequency equation (45) and its associated roots, b, are functions
of these same two parameters, r and q. '

In terms of r, g, and b the frequency equation becomes

4r? (b3—q) 4+ a2 ar? (b?—q) — g2 BI_g2y | ‘ _
{ 4r® (b —q) + P2 + 4 (bB'=q) F & cosh a cos 8 (‘TB*) sinhasin 3 —-2=0 (35])

where a and B are derived from equations (24) and (25) with the condition

§ == 2r: ,
a = [} {r* (3b*—4q)? + 4(b2—q)} 1/2 — 3 r2(5b2—4q)) 2 (52)

B=[3{r" 3b"—4q)* — 4(b*—q)} 12 + § 1*(Sb2—dq))/2 - (33
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——— [_q = 10,000 Equation (51) and the
] associated equations (52) and (53)

form the basis for the solutions
presented in figures 1 — 4. As
4 ‘ has already been noted, the
frequency equation (51) is valid

D/p
only when a and B are real. It

is quite conceivable, however, that

a or 3 could become a pure imagi-
nary function for some values of
the parameters r and q. [The

case of a and B complex is exclu-
ded on the basis of the comm-
ents following (26a)]. When a or
B is imaginary it is then necessary
t0 make the substitution given
in one of the equations (24a) or
(25a) in the frequency equation
{33). The frequency equation
then assumes the following froms:

For a imaginary

452 (bog) —a*
4r? (b?—q) — 2

4r2 (bs_Q) - sz ’
+ 4 (biq) —a't_ cos a’ cos B +

~_ |
%Y , pt+a'* ., .
\Zf;f)% -+ B ?ln a’ sin § —

o . ‘

0 O 04706 08 | -2=0 (54)
3

Fig. 3

/P,

and for 8 imaginary
™ 4r% (b®—q) + a2 4r? (b2—q) + p2 ,
at(bP—q) & B2 " U (bP—q) F & cosh a cosh §

2 2
- ( ? ;g-,g——) sinh a sinh §' — 2 = ¢ (55)
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It isinteresting to note that 3
‘for any one set of the parameters
r and q, it is not immediately obvi- _
ous that there are no roots with 8 —q=10,000
imaginary. For the range of para- '
meters studied, however, no roots 2

were found with B imaginary. / \ - 9=,000
P/p, \\ \Z q#0, 10, 100

In each of the figures | to 4 |

po is the frequency of a fixed-free

beam in vacuo from classical theory, ‘ \\
the corresponding values of which _ [ —
are 0 . ‘
po=3.52, 22.03, 61.70, 120.91 0 02 04 06 08 o
r

These figures are the graphical
representation of p/po versus r for
values of q = 0, 10, 102, 10% and
10% for the first four modes of a finite fixed-free beam on an elastic foundation with the
range of r from 0 to .10. [t isseen that the effect of shear deformation and rotatory
-inertia increases with the increasing foundation modulus and depth of the beam. Similar
conclusion is reached by Tseitlin (15) in his study of beams of infinite length on anv elastic:
foundation. The effect of foundation modulus, of - course,decreases, whereas the effect of
shear deformation and rotatory inertia increases for the higher modes.

Fig, 4
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