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A METHOD FOR COMPUTING THE RESPONSE OF CRACKED
GRAVITY DAMS TO EARTHQUAKE FORCES

MOVSES J. KALDJIAN* aAND GLEN V. BERG**

INTRODUCTION

The Koyna Earthquake of December 11, 1967, caused the Koyna Dam to develop
horizontal cracks both on the upstream and downstream faces in a number of mono-
liths™ ) The cracks were especially severe at elevations where abrupt change occurred
in the slope of the downstream face,

Cracks in dams create geometric nonlinearities, even though material properties are
assumed to remain linear. Thus, the response problem becomes nonlinear. The normal
mode super-positioh approach becomes difficult, and a direct numerical integration of the
equations of motion provides a more attractive approach. For this study the numerical
integration was performed using a fourth order Runge-Kutta method.

In this paper a method is developed for formulating an approximate mathematical
model of a cracked dam, and the behavior of Koyna Dam under earthquake forces is in-
vestigated.

The dam is assumed to have a single horizontal crack extending from the upstream
face to the midpoint of the cross-section of the monolith at the elevation of the change in
siope of the downstream face, as shown in Fig. 1.
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The dimensions shown in Fig. 1 are those of the tallest monolith of Koyna Dam,
and the location and extent of the crack are approximately the same as the worst crack
caused in tha: monolith by the earthquake. The behavior of an uncracked section of the
same dimension was evaluated, using various values of damping, with and without the
virtual mass of the reservoir water. The models were subjected to the El Centro and
Koyna ground motion, and the results are compared.

The numerical work utilizes the finite element technique and employs isoparamestric
elements™ ¥ to obtain the stiffness matrix for the structure. The crack may be repre-
sented by linkage e¢lements* 5 to accommodate independently the horizonta! and verti-
cal stiffnesses across the cracked section, In this particular case it was simpler to compute
complete stiffness matrices for the cracked and uncracked sections, and call for which-
ever one is appropriate at the particular instant. '

MATHEMATICAL MODEL OF DAM

The following assumptions are made in the analysis :
1. The dam is considered to behave in plane strain.

2. The dam is made of homogeneous and isotropic material and is linearly elastic in
material behavior. o

3. The friction force in the crack is neglected, whether the crack is in the open or
closed position.

A constant-stress finite element model for a dam requires subdividing the dam cross-

section into many elements and nodali points. Chopra and Clough'® used 100 elements
and 66 nodal points as shown in Fig. 2 (a) in an earthdam study. The resuiting number
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'Fig.2. Finite Element Tdealization of Dams by Various Authors.
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of degrees of freedom for the dam was 110. - Saini'” analyzed the Koyna Dam using 70
clements and-79 nodal points as shown in Fig. 2 (b). His model had 134 degrees of
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.
frsedom. This type of subdivision is indeed well suited When Mérmal mode super-position
approach is used to solve the dam structure under dynamic. loading. One can find the
frequencies of the structure, and using some modal gmperposition method obtain the res-
ponse of -the structure from the first few modes. - This was the procedure followed by

* Chopra and Clough and Saini. - ’

If one were to solve 110 or 134 aguations of motions simultaneously using a numeri-
cal integration method, the computer time would.become excessive. This hurdle was
overcome by the use of two-dimensional isoparametric finite elements of 8 nodal points
per element™. . Two elements of this type, arranged as shown in Fig. 1, were sufficient
to yield acceptable accuracy. '

One indication of the adequacy of this model is given in Tables I and II , which show
the computed static Ioad deflections of the uncracked Koyna monolith using 354 constant-
stress triangular elements (as used by Clough and Chopra) and 5, 4, 3, and 2 isopara-
metric elements. The subdivision of the section into elements is shown in Fig. 2 (c to g).
The variation in the displacements between 354 constant-stress-element model and 2-iso-
parametric-element model was less than 4 percent,

The 2-isoparametric-clement model is chosen as the mathematical model for this
study. It has 14 nodal points and-22 degrées of freedom: It is also well suited to
accommodate-the horizontal crack in the dam, se¢ Fig. 1. , o

LI
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Fiz 2. Finite Element Ydealization of Dams by Various Authors.

The maximum difference in the extreme vertical stresses across El. 218 ft. (Fig. 1)
between the 354 constant-stress-element and 2-isoparametric-element models was less than
12.3 percent. Table II gives further stress comparisons. The stress calculations may be
refined if desired. At a given instant in the dynamic problem, for example, the displace-
ment pattern obtained from the analysis can be imposed statically on a model of the dam
with many elements, i.e. using a refined mesh, and the stresses)fmay be] calculated, This
method has been found to be successful. .

NUMERICAL WORK

The location and size of the horizontal crack in this model is such}that only two
states of global stiffness are possible. In the cracked state, vertical and horizontal separa-
tion may exist in the crack. In the uncracked state horizontal separation may exist, - since
it is assumed that there is no friction between the cracked surfaces, but vertical separation
may not exist. Thus whether the dam is in the uncracked or cracked state depends entirely
on the vertical displacements of nodal points 6 and 7 (see Fig. 1).

Because the global stiffness matrix is not large (22x22), it was simpler to compute
and store the complete stiffness matrices for the cracked and uncracked states than to
revise the stiffness matrix each time a change of state occurred. During the calculation
the appropriate stiffness was called upon during each incremental time step.

Two criteria were applied to determine which stiffness state to use. For the cracked
state the vertical displacement of nodal point 6 (upper point) had to be greater than that
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Table 1 Comparison of Displacements for Varlous Subdivision and Type of Element
Under Static Loading.

Point Displ-X Displ-Y Elligi egfs Flement Type
.3362° 1002° 354 Constant Stress Triangular
3431 .1030 5 Isoparametric 8 Nodal Points
A 3394 .1021 4 . N
3218 1011 3 . .
3237 0984 2 » .
f 0843 0605 354 Constant Stress  Triangular
.0875 0623 5 Isoparametric 8 Nodal Point
B 0862 0615 4 ” "
.0820 0617 3 " ”
.0809 0602 2 » ”
0214 0265 354 Constant Stress Triangular
0219 0270 5 Isoparametric 8 Nodal Points
C 0216 .0279 4 B »
0215 .0251 3 " -
0213 0245 2 ’ »
(b)

Table T Comparisen of Vertical Stresses for Various Subdivision and Type of Ele-
ment Under Static Loading. (See Table I for location of points).

Vertical Stress at

. Point D . Element Type ° No. of Elements
Point B (mid point) Point E
117.94 - 4.00 -136.96 Cons. Stress 354
126.96 - 1L.76 -137.90 Iso-8 5
124.65 - 8.50 -134.88 Iso-8 4
128.94 - 9.12 -122.71 -Iso-8 3
131.06 ~10.84 -120.11 Tso-8 2

(Stresses are in psi)
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of nodal point 7 (lower point). Otherwise the uricracked state took over. On the other
hand if the vertical stress at nodal points 6 and 7 changed from compression to tension,,
the stiffness was changed to the cracked state.

MASS DISTRIBUTION

Unlike the constant-stress triangular element {(where the mass is divided equally
among the three nodal points), the 8-nodal-point isoparametric element has an uneven
distribution of its mass. If the element is approximately square in shape, the mass is dis-
tributed 1/36 to each corner node and 8/36 to each midpoint node. This distribution rule
was reached indirectly, and somewhat intuitively. When a uniformly distributed normal
load is applied to one edge of a rectangular isoparametric element, the equivalent nodal
point forces are 1/6 of the load at the corners and 4/6 at the midpoint. This distribution
of load to the nodal points results in uniform stress distribution in the element. A simi-
lar reasoning led to the above mass distribution.

VIRTUAL MASS OF RESERVOIR WATER

Following Westergaard’s analysis'®, the virtual mass of the water has been represen-
ted as an equivalent width of concrete

b'=% %“!—' vhy ()
that contributes to the horizontal inertia of the dam but not to its vertical inertia or its
stiffness.
In Eq. (1), Wy =density of the water, and
We=density of concrete (rubble concrete).

For this study we took h to be 301 ft., which was the height of reservoir water above
the base at time of the earthquake, W, to be 62-4 lbs/cu, ft., and W, to be 165 Ibs/cu. ft.

COEFFICIENT OF DAMPING

A diagonal damping matrix was computed that would give approximately 5 percent.
of critical damping in each mode for the uncracked state.

The equations of motion for free vibration are

Mx—]-C;(-Jr-Kx:O -~ (2p
wihere M= inertia matrix
' C=damping matrix
K =stiffness matrix
x=displacement vector. .

The damping matrix may be assumed as

N X '
coans[ s [ o

The matrix C thus computed is a full symmetric matrix, but the diagonal elements.
were dominant, being in most rows at least two times the magnitude of the largest off-
diagonal element which was largely negative. For our analyses we diagonalized C by
simply discarding ali the off-diagonal elements.

. NUMERICAL STABILITY AND COMPUTER PROGRAMING

Normal modes a__nd frequencies were computed for both the cracked and uncracked

-dax_ng;n The frequencies for the uncracked dam compared very well with those found by
SAIni7,
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To have numerical stability in the step-by-step - integration the step size must be a
fraction of the smallest period. ~The time step used for the uncracked dam was 0002 sec
{about 50 percent of the smallést period). It gave stable results. Doubling this step
size, however, yielded unstable results, For the cracked dam the step size was - reduced
to 0.0005 sec to give satisfactory results. This was due to the fact that the cracked dam
had two additional degrees of freedom of motion giving rise to a smaller “smallest period”
than the uncracked dam.

The effect of step sizc on the computed accelerations was much more pronounced
than the effect on computed displacements. Results were computed for the cracked dam
using time steps of 0.001 sec and 0.0005 sec. The differences in the computed dis-place-
ments were very small (within a few percent), but the differences in the computed accelera-
tions were as high as 100 percent or more. Since the maximum stresses. are the critical
response parameters, and stresses are functions of displacements only, one may tolerate
inaccuracies in computed accelerations as long s displacement accuracy is not impaired.
Hence a time step of .0005 sec was considered acceptable. Similar observations were
reported by Tahbildar and Tottenham'®.
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The presence of the horizontal crack in the dam seems to cause a large magnification.
in the computed accelerations. Since nodal points immediately above and below the crack
may have different vertical displacements, velocities, and accelerations in the cracked state
but not in the uncracked state, the sudden transition from one state to the other leads to-
large computed accelerations at the transition times. This phenomenon has negligible:
effect on the displacement response.
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Fig. 3. Max. Displ. and Max. Accel. of Upsiream Face for Various Cases of Dam.

It is necessary to use double precision arithmetic in the calculations. The computation-
time needed, on an IBM 360-67 computer, for each time step of integration was approxi-
mately 0.2 sec for the cracked dam. It took 40 minutes to analyze the dam for the first
7.12 sec of the El Centro (NS) earthquake. Some 14,000 integrations were performed with
a maximum time step of 0.0005 sec.

COMPUTED RESULTS FOR KOYNA DAM

The tallest monolith (monolith No. 18 '¥’) of Koyna Dam, as shown in Fig. 1, was.
chosen as the model to be studied. The rubble concrete gravity dam was assumed to be-
homogenéous and isotropic with Young’s modulus of 3,000,000 psi and Poisson’s ratio-
of 0.2. The dynamic response to the two earthquakes were considered, namely, El Centro,
May 18, 1940. NS component, and Koyna, December 11, 1967, transverse component,
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PISPLACEMENTS

The maximum relative displacements and the maximum absclute accelerations of. the
upstream face of the dam are shown plotted in Fig. 3 for various parameters which are
shown tabulated and designated below.

—

Ca Added Mass .
se Type of Water Damping Earthquake
A Uncracked No No El Centro
B Uncracked No Yes El Centro
C Uncracked Yes No El Centro
D Uncracked Yes Yes Ei Centro
E Uncracked Yes No Koyna
F Cracked No No El Centro
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Fig, 3. Max.lDispl. and Max, Accel. of Upstream Face for Various Cases of Dam.

As would be expected, the presence of added mass due to the water in the reservoir,
Case “C” in Fig. 3, caused greater maximum displacements in the dam. The upstream
top point of the dam deflected 27 percent-more horizontally and 23 percent more verti-
cally than the corresponding point in Case “A’ which had no added mass. On the other
hand for the same point the accelerations in Case <“C” were 52 percent greater than
those of Case “A”. The presence of damping, Cases “D” and “B” in Fig. 3, even
“though reduced greatly the overall response, did not alter substantially the relationship
mentioned above due to added mass,

Maximum displacements caused by Koyna earthquake Case “E” in Fig. 3 were
much smaller than the corresponding displacements produced by ;El Centro earthquake
Case “C”. At the upstream top point, a reduction of 30 percent in the horizontal and
23 percent in the vertical displacements were noticed. The acceleratian response results
werlg quite different and may be attributable to integration step size problem discussed
earhier, :
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The presence of damping, Cases “B” and “D” Fig. 3, (equivalent to 5 percent of
critical damping in each normal mode) proved very effective. The maximum displace-
ments were reduced from the corresponding undamped case (Cases “A” and “C” in
Fig. 3) by approximately 90 percent. Also this effectiveness may have been in part
magnified due to the omission of the off-diagonal terms of the damping matrix, since off-
diagonal terms were mostly negative as mentioned earlier in this paper.

For the cracked dam. Case “F” in Fig. 3, the maximum displacement of the up-
stream top point was 15.2 percent larger horizontally and 38.6 percent larger vertically
than for the uncracked dam, Case “A” in Fig. 3. On the upstream surface of the dam, .
the maximum displacement of the upper point at the crack was 0.33" more vertically than
the lower point. ~The value of the former was 48.8 percent greater, and the latter 19

percent greater than the displacement of the corresponding point.in the uncracked dam,
Case “A™,

In all the cases considered the maximum horizontal displacement of the upstream
face resembled the first mode shape of a cantilever column.

STRESSES

Unlike the maximum displacements, the stresses were not obtained at every time
step. They were calculated and recorded only at accelerogram points.

3_?
) 1]
-l-m ~1

-2

2.
! .
1 1 \/’
0 0
Case B
-1

Cass D

-1

.2 J Case E

Upstream Face

3 LR
Downatream Face

. SE | ’/

-14

.

o

Stress, kai

-11

-2 =24

Case C
=34 34

"

Fig. 4. Maximum nnd Minimam Vertical Stresses in Dam Across
Crack Level (El. 218 Ft.) Due to Earthquake.




-

A Method for Computing the Reasponse of Cracked Gravity Dams to Earthquake Forces 11

The maximum and minimum stresses then refer to the extreme values of the recorded
stresses. The absolute maximum and absolute minimum values of the Btresses may some-
~what vary from the ones presented and discussed in this article. One would expect them
not to be substantially different, however.

The maximum and minimum values of the vertical stress for EL 218 ft (crack level)
are shown plotted in Fig. 4 for all thé six cases considered. The variation in the stresses
between the different cases is indeed very similar to the variation in displacements dis-
cussed earlier. The only exception is found in the Koyna earthquake Case “E” in Fig, 4
where one would haveexpected smaller stresses than the stresses in Case “A", since Case “*A”
had greater maximum relative displacements (see Fig, 3) than Case ““E”, The increase in the
stress in Case “E” over that of Case “A” however may-not necessarily reflect a true picture,
Absolute extreme stresses were not calculated at every step, hence a final conclusion
about this apparent difference of behavior cannot be reached without further study.

The cracked dam, Case “F” in Fig. 4, exhibited the greatest compression and the
* greatest tension across the horizontal section at crack level. In actual design these figures
have to be combined with the stresses caused by hydrostatic-forces, as well as the weight
of the dam itself. There has been no attempt made to evaluate the stress concentration
due to the presence of the crack. A refined’ mesh would be needed for accomplishing
‘this purpose and is beyond the scope of the present study.

DISPLACEMENT AND ACCELERATION TIME PLOTS

Time history plots of the displacements and acceleration of the upstream face of the
uncracked dam for various cases are shown plotted in Figs. 5 through 8. The plots were
constructed using straight line segments between the calculated points. It is noticed that
the maximum values of the displacements occurred at about 5 secs after the- start of the
earthquakes. Thus using 7.15 secs of the accelerograms for the earthquake considered
seems to be justified. The displacement plots show the dominance of the fundamental
mode of vibration in the undamped cases.
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Figures 9 and 10 show displacement plots for the cracked dam, Case “F”. In general
the observations made above for the uncracked dam are also applicable here.
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Figure 10 shows the vertical separation between the two surfaces of the crack at the
upstream face of the dam. Note that the separation between the two surfaces exceeded
a number of times the half inch mark,
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CON CLUSIO.NS AND RECOMMENDATIONS

The present study has demonstrated that it is indeed possible with very few isopara-
metric elements, two in this case, to form a realistic model of a dam for dynamic studies,
and obtain good results within reasonable computer time.

Non-linearities due to geometry, like horizontal cracks, can adequately be handled
with such clements. The application of linkage elements would allow also hydrostatic:
pressure and friction effects in the cracks to be included. This was not done in the pre--
sent study. :

The use of an approximate diagonal mass matrix seems reasonable. However, fur-
ther study is needed to find the best way to distribute the mass of an element among its
nodal points. Consistent mass matrix should also be considered,

The presence of a partial crack substantially increased the displacement response and
caused greater stresses in tension as well as in compression at the level of the crack.

Added mass due to water in the reservoir caused larger displacements.

In the direct numerical integration method, the acceleration response, unlike the dis-
placement response, is found to be very sensitive to step size. For good displacement
results the step size must not exceed one half of the smallest period of the dam. The
greater the number of degrees of freedom of a dam, the smaller is the highest period..
Thus it is advantageous to discretize the dam with fewer elements,
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