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ABSTRACT 

 The problem of static deformation of a homogeneous, orthotropic elastic uniform half-space due to 
non-uniform slip along a vertical strike-slip fault of infinite length and finite width has been studied.  
Closed-form analytical expressions of displacements and stresses for different slip profiles – parabolic, 
linear, elliptic, and cubic are obtained.  The results obtained here are the generalization of the results for 
an isotropic medium (Singh et al., 1994) in the sense that medium of the present work is orthotropic 
which is more realistic than isotropic and results for an isotropic case can be derived from our results. The 
variations of the horizontal displacements and stresses with distance from the fault due to various slip-
profiles at the surface have been studied to examine the effect of anisotropy on the deformation.   
Numerically, it has been found that for parabolic, linear, and elliptic slip profiles, the surface 
displacements in magnitude for isotropic elastic medium are greater than that for an orthotropic elastic 
medium while in case of cubic slip, the surface displacements in magnitude for orthotropic elastic 
medium is greater than that for the isotropic medium. 
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INTRODUCTION 

 Dislocation theory has proved to be a useful tool when applied to studies of ground deformation and 
stresses produced by faulting. On the basis of dislocation theory, several works deal with the 
mathematical treatment of static elastic residual fields. These have contributed to knowledge about the 
deformation of the Earth’s crust associated with an earthquake (e.g., see Steketee (1958), Chinnery (1961, 
1963), Maruyama (1964, 1966), and Press (1965)). 
 In the case of long faults, one is justified in using the two-dimensional (2-D) approximation which 
has simplified the algebra to a great extent. The static deformation of a semi-infinite elastic isotropic 
medium due to a very long strike-slip and a dip-slip fault has been studied by many researchers, e.g., by 
Kasahara (1960, 1964), Rybicki (1978, 1986), Savage (1980), and Mavko (1981). However, most of these 
studies assumed uniform slip profiles on the fault.  The assumption of uniform slip makes the edges of the 
fault plane singular where the displacement is indeterminate and the stress is infinite.  For this reason, 
uniform slip models cannot be used in the near field. There are a number of interesting phenomena that 
occur near the edge of the fault zone, e.g., vertical movements associated with strike-slip faulting.  In 
order to study these phenomena, it is necessary to consider models of earthquake faulting with non-
uniform slip on the fault. Yang and Toksöz (1981) used finite-element method to study the trapezoidal 
type of non-uniform slip on a strike-slip fault in an isotropic elastic half-space. Wang and Wu (1983) 
obtained a closed form analytical solution for displacement and stress fields due to a non-uniform slip 
along a strike-slip fault for the same model. Singh et al. (1994) obtained closed-form analytical 
expressions for displacements caused by a non-uniform slip on a long vertical strike-slip and dip-slip 
faults in a uniform isotropic elastic half-space.  
 The upper part of the Earth is anisotropic (Dziewonski and Anderson, 1981) and most of anisotropic 
media of interest in seismology have, at least approximately, a horizontal plane of symmetry.  A plane of 
symmetry is a plane in which the elastic properties have reflection symmetry, and a medium with three 
mutually orthogonal planes of symmetry is known as orthorhombic. A large part of the Earth is 
recognized as having orthorhombic symmetry (Crampin, 1994).  The orthorhombic symmetry of the 
upper mental is believed to be caused by orthorhombic crystals of olivine relative to the spreading centres 
(Hess, 1964). Orthorhombic symmetry is also expected to occur in sedimentary basins as a result of 
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combination of vertical cracks with a horizontal axis of symmetry and a periodic thin-layer anisotropy 
with a vertical axis of symmetry (Bush and Crampin, 1987). 
 When one of the planes of symmetry in an orthorhombic is horizontal, the symmetry is termed as 
orthotropic symmetry (Crampin, 1989). Since the orientation of stress in the crust of the earth is usually 
orthotropic, most symmetry systems in the Earth’s crust also have orthotropic orientations. The 
orthotropy symmetry is also exhibited by olivine and orthoyroxenes, the principal rock-forming minerals 
of deep crust and upper mantle.  
 Garg et al. (1996) obtained the representation of seismic sources causing antiplane strain deformation 
of an orthotropic medium. Recently, Garg et al. (2003) used an eigenvalue approach to study the plane 
strain problem of an infinite orthotropic elastic-medium due to two-dimensional sources.  
 In the present study, we have obtained closed-form analytical expressions of displacements and 
stresses caused by non-uniform slip on a long vertical strike-slip fault in an orthotropic elastic half-space.  
Four slip profiles, namely, parabolic, linear, elliptic, and cubic are considered. This paper is a 
continuation of previous paper (Garg et al., 1996) in the sense that we have taken the slip as non-uniform 
instead of uniform slip, and is generalization of the previous work for an isotropic medium (Singh et al., 
1994) in the sense that the medium of the present paper is orthotropic which is a better approximation 
than isotropic case.  The deformation at any point of the medium is useful to analyze the deformation 
field around mining tremors and drilling into the crust of the earth.  
 Most of the earthquakes on San Andreas fault are sufficiently long and shallow that a two-
dimensional approximation may be used.  The solution obtained here may find applications to model the 
lithospheric deformation associated with faulting. 
 In order to study the effect of orthotropy of an elastic medium in comparison with the isotropy, 
numerically, we compute the horizontal strike-slip displacements and stresses due to a very long vertical 
surface breaking fault for all different slip-profiles at the surface.  For linear slip-profile the results are 
also compared at the depth.  It is observed that the displacements and stresses for an orthotropic elastic 
medium differ significantly from the corresponding displacements and stresses for an isotropic elastic 
medium. 

BASIC EQUATIONS 

 The equilibrium equations in the cartesian coordinate system ( )1 2 3, ,x x x  for zero body forces are  
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where ijτ  is the stress tensor. The strain-displacement relations are 
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where ( ), 1, 2,3ije i j =  are the components of strain tensor and ( )1 2 3, ,u u u  are the displacement 
components. 
 For an orthotropic elastic medium, with the coordinate planes coinciding with the planes of symmetry 
and one plane of symmetry being horizontal, the stress-strain relations in matrix form are (Sokolnikoff, 
1956)  
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where the two-suffix quantities ijc are elastic constants of the medium.  

 A transversely isotropic elastic medium, with x3-axis coinciding with the axis of symmetry, is a 
particular case of an orthotropic elastic medium for which  

 ( )22 11 23 13 55 44 66 11 12
1, , ,  
2

c c c c c c c c c= = = = −  (6) 

and the number of independent elastic constants reduces from nine to five.  When the medium is isotropic 
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where λ and µ are Lame’s constants.   
 We consider antiplane strain problem in which the displacement vector is parallel to x1-axis which is 
taken to be horizontal and 1/ 0x∂ ∂ =  and 1 1 2 3( , )u u x x=  is the only non-zero component of the 

displacement vector.  In the following, we write u for u1 and ( ), ,x y z  for ( )1 2 3, ,x x x .   The non-zero 

stresses can be written as  

 2
12 13,u uc c

y z
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where 

 2
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The constants α  and c  are positive real numbers and depend upon elastic constants. 
 In case of an isotropic elastic medium 
 c µ=  and 1α =  (10) 

 The equilibrium equations (Equations (2)-(3)) are identically satisfied for the antiplane strain 
deformation, and Equation (1) reduces to 
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FORMULATION AND SOLUTION OF THE PROBLEM 

 Consider a homogeneous orthotropic elastic half-space occupying the region 0z ≥ .  Suppose that 
there is a vertical strike-slip fault of infinite length ( )x−∞ < < ∞  and of finite width (0 )z d≤ ≤  
situated on the z-axis which is taken as vertically downwards (Figure 1).  Let b denote the slip on the fault 
which is non-uniform, in general.  Following Maruyama (1966) and Garg et al. (1996), the displacement 
at any point of the orthotropic elastic half-space due to non-uniform slip on the fault is given by 
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The closed-form analytical expressions of the displacements for various non-uniform slip-profiles are 
obtained from Equation (12). 

y
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Fig. 1  0x =  section of surface breaking, vertical long strike-slip fault in uniform half-space 

0z ≥  (⊕ and Ө indicate the displacements in the positive x-direction and negative x-
direction, respectively) 

1. Uniform Slip 

 First we consider the case when the slip ( )b h  is uniform slip.  In this case, 0( )b h b= , and the 
displacement at any point ( , )y z  of an orthotropic half-space due to uniform slip on the fault becomes  
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where 
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are dimensionless distances and 0/U u b=  is dimensionless displacement in x-direction. 

 Using Equation (8), we get the following expressions for the stresses 
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are dimensionless stresses. 

2. Parabolic Slip 

 Let the slip on the surface breaking fault vary according to 
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The closed-form expression for the displacement at any point of an orthotropic elastic half-space is 
obtained from Equations (12) and (18).  We find 
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and the corresponding expressions for the stresses are 
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3. Linear Slip 

 Let the slip on the fault vary according to the law 
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The deformation at any point of an orthotropic elastic half-space is obtained as 
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4. Elliptic Slip 

 Let the slip on the surface breaking fault vary according to 
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The closed-form analytical expressions for the surface deformation due to elliptic slip are obtained as: 
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The upper sign ‘+’ is for 0Y >  and the lower sign ‘−’ is for 0Y < . 

5. Cubic Slip 

 For the cubic slip profile, 
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The surface deformation is obtained as 
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The results for the corresponding problem for an isotropic medium can be obtained as a particular case 
from the above results on putting 1α = , which coincide with the results obtained by Singh et al. (1994). 

COMPARISON BETWEEN ANISOTROPIC AND ISOTROPIC RESULTS 

 In this section, we wish to examine the effect of the anisotropy on the deformation due to non-
uniform slip along a vertical strike-slip fault of depth d . For this, we compare the results for an 
orthotropic elastic medium with isotropic elastic medium. For an orthotropic elastic medium, we assume 

0.75α =  and for an arbitrary isotropic medium, 1α = . 

 

Fig. 2  Variation of dimensionless horizontal displacement 0/U u b=  for parabolic slip with the 
distance from the fault Y  for orthotropic and isotropic elastic media on the surface 0Z =  
(A denotes the curve for the orthotropic elastic medium and I for the isotropic elastic 
medium)  

 In Figures 2-5, the variation of horizontal dimensionless surface displacements U  with the distance 
from the fault for different slip-profiles − parabolic, linear, elliptic and cubic have been shown.  Figures 
2-4 show that, for parabolic, linear and elliptic slips, the surface displacements in magnitude for isotropic 
medium is greater than that of orthotropic medium while Figure 5 shows that the surface displacements in 
magnitude, in case of cubic slip, for orthotropic medium is greater than that for the isotropic medium.  
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From these figures it is also found that, in case of parabolic, linear and elliptic slips, as we move away 
from the fault horizontally, the difference between the dimensionless horizontal surface displacements for 
an orthotropic medium and an isotropic medium decreases.  In case of cubic slip, the difference between 
the displacements increases as we move away from the fault. The cubic slip profile provides the larger 
differences between the displacements for an orthotropic and an isotropic elastic medium.  

 

Fig. 3  Variation of U  with Y  for an orthotropic and isotropic elastic media on the surface 
0Z =  for linear slip (notations as in Figure 2)  

 

Fig. 4  Variation of U  with Y  for an orthotropic and isotropic elastic media on the surface 
0Z =  for elliptic slip (notations as in Figure 2) 

The variation of surface stress 12σ  with the distance from the fault for different slip-profiles − 
parabolic and elliptic is shown in Figures 6-7.  At the sub-surface level / 2z d=  or 1/ 2Z = , the 
variation of the dimensionless stress 12σ  and stress  13σ  due to linear slip are shown in Figures 8-9. We 
note that the difference between deformations for the two types of elastic media increases with depth of 
the observation point.  It is observed that deformation due to non-uniform slips − parabolic, linear, 
elliptic, and cubic for an orthotropic elastic medium differs significantly from the corresponding 
deformation for an isotropic elastic medium. 
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Fig. 5 Variation of U  with Y  for an orthotropic and isotropic elastic media on the surface 
0Z =  for cubic slip (notations as in Figure 2)  

 

Fig. 6 Variation of dimensionless stress 12σ  for parabolic slip with the distance Y  for an 
orthotropic and isotropic elastic media at 0Z =  (notations as in Figure 2) 

 

Fig. 7 Variation of 12σ  with the distance Y  for an orthotropic and isotropic elastic media at 
0Z =  for elliptic slip (notations as in Figure 2) 
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Fig. 8  Variation of 12σ  for linear slip with the distance Y  for an orthotropic and an isotropic 
elastic media at / 2z d=  or 1/ 2Z =  (notations as in Figure 2) 

 

Fig. 9  Variation of 13σ  for linear slip with the distance Y  for an orthotropic and isotropic elastic 
media at / 2z d=  (notations as in Figure 2) 

DISCUSSION AND CONCLUSIONS 

 In the present paper we have obtained closed-form analytical expressions for static displacements and 
stresses at any point of a homogeneous orthotropic elastic half-space due to non-uniform slip-profiles − 
parabolic, linear, elliptic, and cubic along a very long vertical strike-slip fault.  Numerically, it has been 
found that for parabolic, linear, and elliptic slips the surface displacements in magnitude for an isotropic 
medium are greater than that of an orthotropic medium while in case of cubic slip, the surface 
displacements in magnitude for an orthotropic medium are greater than that for an isotropic medium.  It is 
also found that in case of parabolic, linear, and elliptic slip profiles as we move away from the fault 
horizontally, the difference between the surface displacements for an orthotropic medium and an isotropic 
medium decreases while in case of cubic slip the difference increases. The cubic slip distribution provides 
larger differences between the surface displacements for the orthotropic and isotropic medium.  
 For all slip profiles considered, the slip decreases from a value 0b  at the surface to zero at the depth d.  
If the surface slip 0b  and the fault depth d  are assumed to be the same for all cases, then assuming the 

source potency as 
0

( )d
d

b h h∫  per unit length of the fault, is different for different profiles. This yields 1d  
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4 3 2 16
d d d d dπ π

= = = = = (say) where 1d  is the fault depth for the uniform slip model and 2 ,d  

3 4,d d  and 5d  are, respectively, the fault depths for the elliptic, parabolic, linear, and cubic profiles. 

 To compare the deformation due to non-uniform slip profiles with the corresponding deformation due 
to uniform slip in the same elastic medium, the source potency should be same and it can be achieved by 
varying the fault depth d , keeping the surface-slip constant.  In the present study we have compared the 
results of an orthotropic elastic medium with an isotropic elastic medium for different slip profiles with 
their respective source potencies. 
 The analytical solution obtained here is useful in modelling the lithospheric deformation associated 
with vertical strike-slip faulting in the earth.  The results obtained in this paper are the generalization of 
the previous results for an isotropic medium (Singh et al., 1994) in the sense that the medium of the 
present work is orthotropic which is more realistic than isotropic.  Although a 2-D model is simplification 
of the physical system, such models are useful in gaining insight into the relationship among various 
parameters. Moreover, there are faults, the most obvious being the San Andreas fault, which are 
sufficiently long and shallow that a 2-D approximation may be used.  Static dislocation models are mainly 
applied to analyze the residual deformation of a medium caused by earthquake faults.  Permanent surface 
deformations which occur as a result of faulting can be measured for geodetic surveys carried out before 
and after an earthquake. 
 The Palos Verdes fault is a long major strike-slip fault on the south-western edge of the Los Angles 
metropolitan area with its slip in the sediments (Olsen and Archuleta, 1996).  It has been established that 
in a Palaeozoic type sedimentary rocks in Enola, Arkansas, USA, an earthquake source lies (Crampin, 
1994). In the field, people have frequently encountered approximately equal spacing between the faults, 
i.e., uniform slip on the fault.  While for normal faults and reverse faults it may have to do with the 
dominant wavelength of folding, the assumption of uniform slip makes the edges of the fault plane 
singular where the displacement is indeterminate and the stress is infinite.  For this reason, uniform slip 
models cannot be used in the near field. The present paper may find applications in modelling crustal 
deformation due to non-uniform long vertical strike-slip faults.  
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