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ABSTRACT 

 In a base-isolated building, the rubber bearings, being as protectors of the superstructure, sometimes 
should also be protected from failure because the failure of rubber bearings may result in serious damage 
to superstructure. In this paper, three failure-prevention approaches of rubber bearings are proposed. The 
simplest way is to limit maximum stroke of rubber bearings with stoppers and buffers. This is called soft 
pounding protection. Another way is to arrange additional stiffness components at abutments in certain 
distance from the protected rubber bearings, which is called stiffness variable protection. The third way is 
to install backup supporters with friction sliding plate on their top beside rubber bearings. This is called 
soft landing protection. The principle, working mechanism and analytical models for these safeguard 
devices are studied. The effectiveness of these approaches for protecting rubber bearings is discussed by 
examples.      

KEYWORDS: Seismic Isolation, Soft Pounding, Stiffness Variable Protection, Soft Landing, Rubber 
Bearing 

INTRODUCTION 

 The fundamental principle of base isolation is to set a flexible layer between superstructure and 
footing base. Flexibility of the isolation layer causes the fundamental period of a given structure to be 
extended to a value far away from the dominant period contents of earthquake ground motion ranging 
from 0.1 to 1.0 sec so that the earthquake-induced loading will be greatly reduced. Theoretically, the 
fundamental period of base-isolated structure should be as long as possible to avoid this period range 
through lowering the stiffness of isolation system, but it might result in a large horizontal displacement. 
Also, the rubber bearing must have sufficiently large deformation capacity to undertake this large 
horizontal displacement. Using large diameter rubber bearings can give required large lateral deformation 
capacity, but the horizontal stiffness and cost of the isolation system increase consequently. The rubber 
bearings of relatively small diameter can both lengthen the period of the structure and reduce the cost of 
isolation system, but its lateral stability during a strong earthquake sometimes would be a problem. In 
consideration of these factors, as mentioned above, the fundamental period of the base-isolated buildings 
usually is kept as 2.0 sec. But, sometimes, the fundamental period of base-isolated structures has been 
extended to 3.0-4.0 sec to avoid the possible long period resonance. However, if relatively small diameter 
rubber bearings are adopted that probably have no sufficient lateral deformation capacity, during the 
extreme earthquake, adopting protect measures becomes necessary. In order to prevent failure of rubber 
under long period ground motions, Kelly et al. (1980) proposed a skid system, which provides hysteretic 
damping to protect rubber bearing and has been verified by shaking table testing. Moreover, the isolators 
in buildings are protected due to finite moat width (the isolation plane cannot displace more than the moat 
width), especially when the seismic input is much larger than the expected ground motions. The impact 
between building and moat is surely able to protect superstructures but simultaneously induces harsh 
accelerations or high frequency shocks in it. Hence, inserting mechanical buffers and dampers onto the 
gap between building and moat perhaps is a supplemental measure to abate such kind of shocks. In this 
paper, three measures for protecting rubber bearings are proposed: 1. soft pounding protection, 2. variable 
stiffness system, 3. soft landing protection. Options 1 and 2 in this paper will be excellent choices in 
softening the impact. The principle, working mechanism and analytical models for these safeguard 
devices are studied. The seismic response analyses of the base-isolated systems with rubber bearing 



138 Study on Protection Measures for Seismic Isolation Rubber Bearings 
 

 

failure prevention measures are also carried out. The purpose of the study in this paper is to develop a 
more economical base isolation system by using relatively smaller rubber bearings, especially for fitting 
the need of small size buildings. Hence, isolators should be designed only for frequently or occasionally 
occurring moderate earthquakes, while those are allowed to be unstable at the maximum possible 
earthquake with reliance on the proposed protection devices to eliminate catastrophic failure. The 
analytical methods in this paper combined with future shake table tests may pave a way for such new 
design approach. 
 
 
 
 
 
 
 
 
 
 
 
THE SOFT POUNDING PROTECTION  

1.  Fundamental Principle 

The schematic diagram of a buffer stopper is shown in Figure 1, where d is the preset space between 
isolated structure and footing base. If the horizontal displacement of the isolation layer increases and 
reaches the prescribed value of d, the stopper will bump on the isolator, thus further increase of 
displacement of rubber bearings would be restricted. In contrast, without buffer between the isolator and 
the stopper, the so-called hard pounding will happen. In Kelly et al. (1980), the authors studied the 
isolation systems for a judicial building in California, the first base-isolated building with laminated 
rubber bearings in America, and concluded that the high frequency vibration caused by hard pounding is 
harmful to superstructure. Many theoretical and experimental studies on base isolation devices and 
isolator fail protection systems have been carried out in recent twenty years or so (Bruce and Carlos, 
1992; Buckle and Kelly, 1986; Griffith et al., 1987; Han, 1997; Kelly et al., 1980; Kelly, 1998; Koh and 
Kelly, 1986; Nagarajaiah and Ferrell, 1999; Ohhira et al., 1990; Sun and Goto, 1996; Zhou et al., 1997; 
Zhou et al., 2000). In this paper, we introduce a system with a buffer and a stopper in parallel, called 
buffer stopper. When soft pounding happens, stoppers will undertake deformation and impose desirable 
reaction force onto the isolators, which, together with the restoring forces of the rubber bearings, will 
restrict the lateral deflection of rubber bearings within the allowable value. 

 
 
 
 
 
 
 
 
 
 
 
 
 

d d 

xl xr 

mn-1 

m3 

m2 

mn 

m1 

c1 
 

c2 
cb cb 

cn 

cn-1 

c3 kb 
kb k3 

kn 

kn-1 

k1 

k2 
 

Fig. 2  Mechanical model (I) 

d d d d 
Superstructure 

Foundation 

Rubber 
Bearing Base Buffer Stopper 

Fig. 1  Schematic diagram of buffer stopper 



ISET Journal of Earthquake Technology, June-December  2003 139 
 

 

2.  Mechanical Model and Equations of Motion 

 In the course of soft pounding, the interaction force among stoppers and isolators is imparted to 
basement and then transmitted into the foundation through spring and damping devices. The model 
described here includes the effect of soil-structure interaction (see Figure 2), but only one-dimensional 
horizontal motion is concerned. The rocking and torsional effects of the soil-structure interaction system 
are neglected in this study. 

 The concerned building is regarded as a shear type structure. In Figure 2, , ,i i im k c  ( )3,...,i n= are 
the mass, stiffness coefficient and damping coefficient, respectively, for each storey of the superstructure 
(the corresponding fixed base structure), 2 2 2, ,m k c  are the mass, stiffness coefficient and damping 
coefficient of the isolating layer, respectively, and 1 1 1, ,m k c  are the mass of the basement, equivalent 
stiffness coefficient and damping coefficient of the soil, respectively, which are determined according to 
the five lumped parameters 2-DOF discrete model (Wolf and Somaini, 1986; Jean et al., 1990; Luan and 
Lin, 1996). The mass of the stopper is negligible, ,b bk c  are stiffness coefficient and damping coefficient 
respectively of isolation layer, d  is the designed presetting free space of the stopper, and andr lx x  are 
deformations of the right and left stopper respectively. However, pounding may repeatedly happen during 
an earthquake, so the stopper may have been deformed before one more bumping occurs. Nevertheless, 
both the values of andr lx x  are zero when the first pounding takes place. 

2.1  Equation of Motion without Pounding  

 If the isolators do not bump against the stoppers that means the stopper has no effects on the motion 
of the structure, then the model in Figure 2 turns into a normal shear structure. Thus, the equation of 
motion becomes  

 [ ]{ } [ ]{ } [ ]{ } [ ]{ }1 gM x C x K x M x+ + = −&& & &&   (1) 

where [ ]M  is a diagonal mass matrix of order ,n n×  [ ] [ ],C K  are damping and stiffness matrices 
respectively of order .n n×  {x}, { x& }, { x&& } are n-dimensional vectors of nodal relative displacement, 
velocity, acceleration, against ground, respectively, {1} is the identity vector, and gx&&  is ground 

acceleration. We further suppose matrix [ ]C complying with the property of proportional damping.  

2.2  Equation of Motion for Right Pounding 

 When the interstorey displacement of the isolation layer is larger than the sum of the preset open 
space and the deformation of the right stoppers ,rx  namely, 2 1 ,rx x x d− > +  the isolators will bump 
against the right stoppers. The equation of motion in this case is given by (Han, 1997) 

 [ ]{ } { } { } [ ]{ } [ ]{ }1 g bM x C x K x M x K d   + + = − −  && & &&   (2) 

where [ C ], [ K ] are equivalent damping matrix and stiffness matrix, respectively. They are defined as  

 [ ] [ ]bC C C  = +         (3) 

 [ ] [ ]bK K K  = +      (4) 
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During right bumping, neglecting the mass of the stopper, the number of degree of freedoms of the 
system does not increase. The effect of the bumping is to incorporate the restoring force and damping 
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force of the stopper onto interaction force between mass 1 2and .m m  The equilibrium equation of the 
interaction force is 
 b r b r brc x k x p+ =&   (5) 

where, brp  is the force of the isolators applied on the stoppers at the right side. Apparently, we have 

 2 2 1 2 2 1( ) ( )brp c x x k x x= − + −& &   (6) 
In the course of right bumping, i.e. when 0,brp >  the lateral deformation of the stoppers becomes 

 dxxxr −−= 12    (7) 
When 0,brp =  the isolators and the stoppers separate, and the bumping stops. From this time to the next 
pounding, the lateral deformation of the stopper complies with the following law (Sun and Goto, 1996) 
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where, 0rx  is the lateral deformation of the stoppers when the isolators and the stoppers separate. 

2.3  Equation of Motion for Left Pounding  

 When the interstorey displacement of the isolation layer is smaller than the difference of the left 
stopper deformation and the preset open space, namely, 2 1 ,lx x x d− < −  the isolators will pound on the 
left stoppers. The equation of motion becomes 

 [ ]{ } { } { } [ ]{ } [ ]{ }1 g bM x C x K x M x K d   + + = − +  && & &&   (9) 

The notations, involved in the above equation, are same as those in Equation (2). The equation of motion 
of the left stoppers is  

 bllblb pxkxc =+&          (10) 
where blp  is the force of the isolators imposed on the stoppers. During the process of left pounding,  
i.e. 0,blp <  the lateral deformation of the stoppers is  

 dxxxl +−= 12           (11) 
When 0,blp =  the isolators and the left stoppers separate, and the bumping stops. From this moment blt  
to next bumping, the lateral deformation of the stoppers is 

 
( )

0

b
bl

b

k t t
c

l lx x e
− −

=        (12) 

where 0lx  is the lateral deformation of the stoppers at time blt t=  when the isolators and the left stoppers 
separate from each other. 

2.4  Solution of the Equations and Computer Code 

 The motion equations of base-isolated building, with pounding protection of rubber bearings, are 
solved by Wilson-θ algorithm numerically, the value of θ is chosen as 1.4, and a computer program, 
incorporating all the possible right and left pounding effects listed in Sub-sections 2.2 and 2.3, has been 
developed to carry out following analyses. This computer program integrates both the seismic time 
history analyses of soft pounding system and stiffness variable system. The input data of the program 
includes structure parameters, ground motion acceleration time history and scale factors, soil property 
parameters, site category and control variables which are used to fit the different kinds of analysis 
purposes. The mentioned program, written in FORTRAN language, can be used to analyze shear type 
non-linear structures by using piecewise linear model (Han, 1997). The outputs of the program include 
the relative horizontal displacements, interstorey horizontal displacements, shear forces and acceleration 
responses of superstructure in terms of peak values and time history. The time interval or step in 
numerical calculations is chosen as 0.02 sec in this study. 
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3.  Numerical Analysis for an Example Building 

 To demonstrate the effect of soft pounding in aspect of protecting the rubber bearings, we consider a  
6-storey building located in seismic zone with ground motion severity of 0.4g. The fundamental period of 
the fixed-based building is 0.3 sec and that of the base-isolation building is 1.97 sec. We suppose that the 
structure is located at a site of type III category whose shallow subsoil consists of soft soil layer (clay and 
sand, the equivalent average shear wave velocity within depth of 20 m is not larger than 140 m/s) and the 
thickness of overburden is less than 80 m, according to the Chinese seismic design code (CABP, 2001), 
and assume that the stoppers have been installed in the isolation layer. The analysis model of the structure 
is same as shown in Figure 2. The parameters of the model are listed as follows. Mass and stiffness of the 
superstructure: 3 4 5 6 7 430 t,m m m m m= = = = = 8 270 t,m =  3 4 5k k k= = = 62.86 10 kN m,×  6k =  

7k 8k= 62.35 10 kN m.= ×  The damping ratio of the superstructure: ξ′ = 0.05. Mass, stiffness and 

damping ratio of the isolation layer: 2 330 t,m =  6
2 2.86 10 kN m,k = ×  the damping ratio of the 

isolation layer ξ″  = 0.05. Mass of the base: 1 350 t.m =  Equivalent stiffness and damping coefficient of 

soil: 6
1 5.11 10 kN m,k = ×  5

1 1.686 10 kN m.c = ×   

3.1  Pre-option of the Stoppers’ Parameters  

 The preset space d  is chosen as 10 cm, 15 cm and 20 cm. The damping coefficient bc  is determined 
by the value of 2 ,bCR c c=  where 2c  is damping coefficient of the isolation layer. A set of CR  values 
of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 is chosen for comparative analysis. Here, 0CR =  means that 
the damping of the buffer stopper is zero. 
 The stiffness coefficient, kb, is determined according to its capacity of recentering TN, which is the 
ratio of the period of time required by the stopper to recover 10% of the maximum deformation and the 
fundamental period of the structure. Keep this definition of TN in mind and notice that the frequency of 

base-isolated building M
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It is easy to observe from Equation (8) that the following approximate relationship between bk  and 2k  

exists 
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As shown in Equation (13), TN is a parameter related to the flexibility characteristics of the stoppers, the 
value of which is chosen as 1, 0.5 and 0.25. 

3.2  Parameter Option and Optimization for Stoppers 

 The NS acceleration component of 1940 El Centro earthquake record is used as input motion, but the 
severity of the recorded motion has been scaled to required design level and then the peak acceleration is 
chosen 220 gal and 620 gal, which respectively corresponds to the EPA (effective peak acceleration) 
value of the most probably occurring earthquake and maximum considered earthquake in Chinese seismic 
design code for buildings. These two levels of design earthquake ground motion, combined with design 
basis earthquake, whose EPA is 450 gal in this example as mentioned above, form so called multiple level 
defense provisions in Seismic design code for buildings (CABP, 2001). It is worth pointing out here that 
the Chinese seismic design code usually requires to only analyze seismic responses of structures subjected 
to the mentioned most probably occurring earthquake and maximum considered earthquake which also is 
called extreme earthquake. Using the computer program mentioned in Sub-section 2.4, we calculate the 
maximum interstorey displacements and maximum interstorey shear forces for input accelerations of   
220 gal and 620 gal, and various values of d, CR, TN. The results are listed in Tables 1-4.  
The concerned topics in parameter optimization: In aspects of parameter optimum of buffer and restrainer 

including selection of the stiffness and damping coefficient of the stopper, there are three topics that 
should be emphasized and each of them provides certain preconditions or requirements to be 
complied.  
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Table 1: Maximum Interstorey Displacement D2max (cm) for Model I Subjected to El 
Centro Record (EPA = 220 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
1 10 10.7 10.7 10.6 10.5 10.5 10.4 10.4 10.4 10.4 10.3 10.3 

1/2 10 10.7 10.6 10.6 10.5 10.5 10.4 10.4 10.4 10.3 10.3 10.3 
1/4 10 10.7 10.6 10.6 10.5 10.4 10.4 10.4 10.3 10.3 10.3 10.3 

Table 2: Maximum Interstorey Shear Force Q3max (kN) for Model I Subjected to El 
Centro Record (EPA = 220 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
1 10 2720 3110 3450 3730 3960 4150 4320 4460 4580 4680 4770 

1/2 10 2720 3120 3470 3740 3970 4170 4340 4480 4600 4700 4790 
1/4 10 2720 3130 3490 3780 4010 4200 4370 4510 4630 4730 4820 

Table 3: Maximum Interstorey Displacement D2max (cm) for Model I Subjected to El 
Centro Record (EPA = 620 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
 10 30.2 22.4 19.3 17.5 16.7 15.8 15.2 14.6 14.3 14.0 13.5 

1 15 30.2 25.6 23.2 22.0 21.0 20.4 19.9 19.4 19.2 18.8 18.7 
 20 30.2 27.9 26.5 25.7 25.0 24.6 24.3 24.1 23.7 23.6 23.4 
 10 30.2 21.7 18.6 17.0 16.1 15.3 14.5 14.0 13.6 13.2 13.0 

1/2 15 30.2 25.3 22.9 21.7 21.0 20.1 19.8 19.3 19.1 18.6 18.5 
 20 30.2 27.7 26.3 25.6 24.9 24.6 24.2 23.8 23.7 23.5 23.1 
 10 30.2 21.1 18.2 16.8 15.5 14.7 13.9 13.3 13.0 12.7 12.4 

1/4 15 30.2 24.8 22.6 21.4 20.6 20.0 19.4 19.0 18.7 18.4 18.1 
 20 30.2 27.5 26.1 25.3 24.7 24.3 23.9 23.7 23.3 23.1 23.0 

Table 4: Maximum Interstorey Shear Force Q3max (kN) for Model I Subjected to El 
Centro Record (EPA = 620 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
 10 7650 7570 9210 10400 11700 12700 13400 13900 14200 14400 15000 

1 15 7650 8370 10500 12100 13200 14200 15100 15900 16600 17500 18100 
 20 7650 8760 10740 12400 13900 15200 16400 17400 18300 19100 19800 
 10 7650 7810 9460 10600 12000 12900 13500 13900 14200 14600 15600 

1/2 15 7650 8650 10600 12300 13500 14400 15400 16200 16900 17600 18500 
 20 7650 8930 10900 12600 14200 15500 16700 17700 18600 19400 20100 
 10 7650 8480 10200 11600 12500 13200 13400 13500 14800 15900 17000 

1/4 15 7650 9260 11500 13100 14400 15200 15900 16800 17700 18500 19200 
 20 7650 9390 11300 13100 14700 16200 17300 18400 19100 19900 20600 

 
(1) About isolation layer: At first the vertical load and maximum interstorey displacement of isolation 

layer should be controlled within its allowed values; otherwise the rubber bearings may damage 
or lose their stability. Based on the related testing results for the prescribed rubber bearings 
(CABP, 2001; CABR, 1999), the allowed interstorey horizontal displacement of isolation layer 

2maxD  for the structure in this example is set as 22 cm if the diameter of the rubber bearings used 
in isolation layer is 40 cm, and the allowed vertical axis compression stress is 15 MPa. 

(2) Superstructure: The maximum interstorey displacements of the superstructure should be restricted 
within allowed values stipulated by seismic design code. Meanwhile, the maximum storey shear 
forces, that usually take place at bottom storey of the superstructure, should be smaller than the 
allowed value. 

(3) Consideration of construction cost: We should use stoppers as less in size as possible to reduce the 
cost of construction and maintenance. 
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Option of parameters 
1. Designed preset space d: Tables 1 and 2 show that the value of 2maxD  reduces slightly and the 
value of 3maxQ  increases significantly when increasing the value of ,CR  which is a parameter 
depending on damping of the stoppers. For example, when TN = 1, and d = 10 cm, the value of 2maxD  
for 25CR =  is 0.3 cm smaller than that for CR = 0, the reduction being 2.7%, and the value of 3maxQ  
increases from 2720 to 4150 kN, the increase being 52%. Evidently, the disadvantage of the buffer 
stopper overweighs its advantage during a moderate earthquake of 0.22g. Considering the larger 
occurrence probability of such kind of a design moderate earthquake in seismic zone of high 
intensity, the designed preset space should not be too small. We should make sure that the isolators do 
not bump against the stoppers during a frequently occurring earthquake. 
 For this example building, the values of 2maxD   just slightly exceed the preset d of 10 cm during 
the most likely occurrence earthquake with EPA of 0.22g corresponding to the design basic 
earthquake of 0.45g. So we may choose 10 cm as the lower limit of d value. 
 As shown in Table 3, when d = 20 cm, the inequality, 2max > 22 cm,D  is always satisfied for all 
the preset values of d. When bumping happens, it is true for all values of d such that 2max .D d>  In 
order to satisfy the requirement of 2max 22D <  cm, as mentioned previously, the preset value of d 
should be less than 20 cm.  
2. The ratio of the damping coefficient of the stoppers and that of isolation layer CR: From Tables 3 
and 4, it can be seen that increasing CR  can decrease the value of 2maxD  but the increasing trend of 
the latter is larger than the reducing trend of the former in case of increased Q3max. So we can 
determine the lower limit of CR  according to condition 1, and the upper limit according to condition 
2. Then we give a suitable range for the value of ,CR  to comply with the requirement 3. In general, 
the smaller value of CR  is preferable from the viewpoint of engineering application. In fact, larger 
value of CR  will create additional difficulty in designing and manufacturing of the stopper. 
Furthermore, smaller values of CR mean that fewer stoppers are required which is less expensive. 
 For this building, in consideration of the above three requirements, better values of CR  and d  
can be chosen according to 2maxD  and 3maxQ  as underlined in Tables 3 and 4. For instance, when d  
= 10 cm, CR  = 5-15 is preferable, and when d  = 15 cm, CR  = 15-20 is suitable. Anyway, d  = 15 
cm is more suitable in this case. 
3. Flexible property of the buffer stopper TN: For a certain value of CR , decreasing TN  causes 
decrease in value of 2maxD  and increase in 3max .Q  However, the increasing potential of 3maxQ  is over 
the decreasing one. Thus, the value of TN should not be too small. All the three values of ,TN  given 
in Tables 1-4, seem suitable. 

 Now, let us input Mexico earthquake records of 1985 into the same example structure and make the 
peak values of acceleration scaled to 220 gal and 620 gal. The maximum interstorey displacements and 
maximum interstorey shear forces of isolation layer for various values of ,d  NK  and CR  are calculated 
by using the mentioned program and the results are listed in Tables 5-8. Obviously, the input period 
matches the isolated period in this case and the so called semi-resonance phenomenon takes place. 
However, the acceleration of the 1985 Mexico record reaches 620 gal nearly which is impossible even for 
Mexico City. We use it as input motion of the example structure only for numerical comparison’s sake. 
The computation results, shown in Tables 5 and 8, indicate that the maximum interstorey displacement 
rapidly decreases with increasing .CR  However, the changing rule of first interstorey shear force with 
increasing CR  apparently differs from that of interstorey displacement. In fact, the figures, shown in 
Table 6 and 8, illustrate that the interstorey shear force first decreases and then increases again with 
increasing CR. If we use rubber bearings of diameter 40 cm, the maximum interstorey displacements, 
which satisfy the requirement of the lateral deformation of rubber bearing as stipulated in the Chinese 
seismic design code, and the corresponding shear forces are indicated by the underlined figures in Tables 
6 and 8. In consideration of construction feasibility and the general requirement of reducing cost, less 
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,d CR  and larger TN  are expected. Thus, TN  = 1, d  = 10 cm, and CR  = 20 is a good choice if input 
motion EPA = 220 gal. When EPA = 620 gal, only few combinations of d, TN  and CR , as indicated by 
the underlined figures in Tables 7 and 8, enable the maximum displacements of isolation layer less than 
the allowed value of 22 cm, for example, d  = 10, CR  = 45 and TN  = 1. These results show that by 
using suitable spring and damper and presetting certain free space between building and stopper in soft 
pounding system, the lateral displacement of isolation layer can be tremendously reduced within allowed 
values even though the original displacement of rubber bearings without protection measure is as large as 
330 cm. Comparing the computational results listed in Tables 1-8 for Mexico wave and El Centro wave 
inputs, it can be seen that both displacements of isolation layer and maximum interstorey shear forces 
decrease simultaneously with increasing CR for Mexico wave, but in contrast, the maximum interstorey 
shear forces can increase with increasing CR, though the displacements of isolation still decrease for El 
Centro wave. That means, for El Centro like input wave, the reduction of lateral deformation of base 
isolation layer is at the cost of increase in shear forces of superstructure. Apparently, the proposed soft 
pounding protection measure in case of Mexico input is more effective compared to El Centro input.  

Table 5: Maximum Interstorey Displacement D2max (cm) for Model I Subjected to 
Mexico Wave (EPA = 220 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
 10 117 39.0 29.3 24.1 21.1 19.3 18.0 17.0 16.1 15.7 15.3 

1 15 117 43.1 34.0 29.2 26.4 24.5 22.9 22.3 21.5 20.9 20.5 
 20 117 46.7 38.9 34.3 31.4 29.9 28.4 27.4 26.5 26.1 25.6 
 10 117 36.2 26.6 22.0 19.4 17.9 16.6 15.9 15.4 15.1 14.6 

1/2 15 117 40.7 31.8 27.4 24.8 23.1 22.1 21.2 20.8 20.3 19.9 
 20 117 45.0 37.1 33.0 30.5 28.7 27.7 26.6 26.1 25.6 25.3 
 10 117 31.7 23.0 19.2 17.4 16.5 15.7 15.1 14.7 14.4 13.9 

1/4 15 117 37.3 28.7 24.9 22.9 21.9 21.1 20.5 20.0 19.6 19.4 
 20 117 42.3 34.5 31.0 28.8 27.4 26.5 25.9 25.4 25.0 24.7 

Table 6: Maximum Interstorey Shear Force Q3max (kN) for Model I Subjected to Mexico 
Wave (EPA = 220 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
 10 29700 12900 13500 14500 15500 16400 17000 17500 18000 18400 18700 

1 15 29700 14000 15400 16700 17800 18600 19100 19900 20800 21500 22200 
 20 29700 14800 17300 18900 20200 21300 22000 22500 23000 23600 24500 
 10 29700 13000 13200 14300 15200 16000 16400 17100 17900 18600 19000 

½ 15 29700 14200 15400 16700 17600 18300 19100 20100 21000 21800 22400 
 20 29700 15300 17500 19200 20400 21200 21900 22400 23300 24200 24900 
 10 29700 13200 13000 13900 15400 16600 17400 18100 18900 19500 19800 

¼ 15 29700 14800 15500 16600 17500 19000 20100 21100 21800 22500 23300 
 20 297001 16200 18100 19700 20600 21500 22500 23500 24400 25200 25900 

Table 7: Maximum Interstorey Displacement D2max (cm) for Model I Subjected to 
Mexico Wave (EPA = 620 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
 10 330 97.7 66.4 50.6 41.7 35.8 31.9 28.5 26.4 21.0 23.6 

1 15 330 101 71.0 56.1 46.5 41.2 36.5 33.6 31.8 30.2 29.0 
 20 330 104 75.0 60.3 51.3 46.0 41.7 39.3 37.2 35.6 34.2 
 10 330 86.4 56.5 42.4 34.6 30.2 27.1 24.7 23.1 22.0 20.9 

½ 15 330 90.6 61.6 48.1 40.7 35.8 32.5 30.7 29.0 27.7 27.1 
 20 330 94.4 66.6 53.6 45.8 41.0 38.0 36.4 34.7 33.3 32.9 
 10 330 70.8 44.2 33.5 28.6 25.5 23.4 21.7 20.7 19.7 18.8 

1/4 15 330 76.1 50.6 39.2 34.7 31.7 29.4 28.1 26.8 25.7 25.2 
 20 330 81.0 55.8 45.3 40.1 37.2 35.4 34.2 32.8 31.7 30.8 
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Table 8: Maximum Interstorey Shear Force Q3max (kN) for Model I Subjected to Mexico 
Wave (EPA = 620 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
 10 83600 32600 31200 33000 34600 35900 37388 38100 39400 40500 41400 

1 15 83600 33600 33200 35800 37300 39300 40300 41700 43200 44400 45600 
 20 83600 34600 34900 37700 39800 41900 43400 45100 46500 47700 48700 
 10 83600 32000 29000 30100 31400 33100 34300 35400 37000 38200 38700 

1/2 15 83600 33300 31500 33500 35500 37000 38400 40000 41500 42800 44700 
 20 83600 34400 33600 36400 38300 40100 41700 43900 45600 47100 49200 
 10 83600 31400 27500 27100 29300 31800 34000 35400 37300 38300 39200 

1/4 15 83600 33200 30000 31100 34300 37300 39300 41800 43300 44500 46600 
 20 83600 34600 32500 35100 37500 40800 43800 46600 48300 49900 51200 

 Now, let us move to maximum absolute acceleration responses for model I, for instance on taking 
TN  = 1 and d  = 10 cm. The distribution of peak acceleration along height of the building is shown in 
Table 9, in which n represents the floor number of the example building. When CR  = 0, that means no 
protection measure is adopted in the structure, the absolute acceleration responses are slightly increased 
along height but their diversification along height or floor levels is very small. It can be seen from Table 9 
that the absolute peak acceleration increases with increasing CR  and decreasing floor number ,n  and the 
maximum value usually is located at third floor level, next to isolation layer. The amplification of 
acceleration at the third floor level with increasing CR  usually comes from high frequency shock in the 
pounding process. If CR  is approaching to infinity, or TN approaching to zero, as indicated by Equation 
(13), which shows the relation between CR  and TN , the behavior of the system closes to hard pounding 
without buffer. Thus, the absolute accelerations are gradually amplified and the distribution of 
acceleration along height turns from inclined straight line to K shape line as can be seen in Table 9. Hard 
pounding surely is harmful to the superstructure. Anyway, appropriate incorporating springs and buffers 
are able to eliminate high frequency vibrations induced by the hard pounding. 
 
 

 

 

 

 

 

 

4.  Simplified Analysis of Base-isolated Building on Rigid Foundation  

 For base-isolated building on rigid foundation, the model I can be simplified as model II (see Figure 
3), in which the soil-structure interaction is neglected. Therefore, mass m1 and the stopper are fixed and 
the 8-DOF system is reduced to a 7-DOF system. 
 In model II, all the parameters are same as in model I except mass m1 which is vanished in this case. 
The same analysis method has been used to calculate the seismic responses as for model I. It should be 
noted that, in this case, the first several natural periods of the base isolation system without considering 
the effect of soil-structure interaction are almost same as the corresponding values of the structure with 
interaction effects. Parts of the results for the base isolation building on rigid foundation are listed in 
Tables 10-11. Comparing the results of Tables 10 and 3, 11 and 4, it is found that the differences among 
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Fig. 3  Mechanical model (II) 
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them are very small which means that for this example structure, the effects of soil-structure interaction 
can be neglected. Therefore, we can use model II instead of model I to analyze the example building. For 
this reason, only cases without consideration of interaction effects are discussed in following sections. 

Table 9: Maximum Absolute Acceleration (cm/s2) for Model I Subjected to El Centro Wave      
(EPA = 620 gal) 

TN D n  CR 0 5 10 30 50 100 Hard 
Pounding 

3 312 540 814 1469 1770 2878 5750 
4 315 452 644 1108 1288 2050 4510 
5 316 422 591 988 1119 1730 3780 
6 318 405 552 887 1049 1550 3070 
7 319 474 646 1038 1210 1880 3700 

1 10 

8 319 555 778 1281 1490 2370 4860 

Table 10: Maximum Interstorey Displacement D2max (cm) for Model II Subjected to El 
Centro Wave (EPA = 620 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
 10 30.1 224 19.3 17.6 16.6 15.8 15.3 14.7 14.2 14.0 13.6 

1 15 30.1 25.6 23.3 21.9 21.0 20.4 19.9 19.6 19.2 19.0 18.6 
 20 30.1 27.7 26.5 25.7 25.1 24.7 24.3 24.1 23.8 23.6 23.4 
 10 30.1 21.7 18.7 17.1 16.1 15.3 14.6 14.0 13.5 13.2 13.1 

1/2 15 30.1 25.3 23.0 21.7 21.0 20.3 19.8 19.3 19.0 18.81 18.4 
 20 30.1 27.7 26.3 25.6 25.0 24.6 24.2 23.9 23.7 23.5 23.3 
 10 30.1 21.1 18.3 16.6 15.5 14.5 13.9 13.3 13.0 12.7 12.4 

1/4 15 30.1 24.8 22.6 21.4 20.6 20.0 19.4 19.0 18.7 18.4 18.2 
 20 30.1 27.5 26.2 25.3 24.7 24.3 24.0 23.6 23.4 23.2 23.0 

Table 11: Maximum Interstorey Shear Force Q3max (kN) for Mode II Subjected to El 
Centro Wave (EPA = 620 gal) 

TN d  CR 0 5 10 15 20 25 30 35 40 45 50 
 10 7630 7590 9240 10670 12000 13100 13800 14300 14700 15100 16000 

1 15 7630 8390 10600 12300 13600 14700 15600 16500 17300 18100 18800 
 20 7630 8770 10900 12700 14300 15700 17000 18100 19100 12000 20700 
 10 7630 7850 9510 11000 12400 13400 14000 14400 14700 15700 17000 

1/2 15 7630 8670 10700 12300 13800 14900 15900 16800 17700 18500 19200 
 20 7630 8930 11000 12898 14543 16006 17300 18433 19400 20303 21000 
 10 7630 8510 10300 11600 12800 13500 13900 14500 15900 17200 18400 

1/4 15 7630 9300 11500 13200 14400 15500 16500 17500 18400 19200 20100 
 20 7630 9400 11400 13400 15200 16700 18000 19000 20000 20800 21600 

 Unlike hard impact between building and moat wall, we did not observe apparent harmful high 
frequency components in this example structure, either incorporating soil-structure interaction or not, 
when some dampers are equipped together with springs in parallel as shown in Figures 2 and 3. This is an 
advantage of soft pounding system over hard pounding.  

STIFFNESS-VARIABLE PROTECTION SYSTEMS  

1.  Fundamental Principle 

The primary idea of stiffness variable protection comes from observation of displacement response 
spectra which give the relationship between the peak displacement and the natural period of SDOF 
oscillator with certain damping. In fact, the smoothed displacement response spectra calculated from 
variety of acceleration records have common tendency of increase with increasing period. Based on this 
idea, a stiffness variable protection system has emerged in which an additional stiffness component is 
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equipped at abutments certain distance away from the protected rubber bearings, with substituting 
additional stiffness components acting as stiffness regulator. The relationship between restoring force and 
displacement of isolation layer equipped with supplemental springs is shown in Figure 4 in which K is 
initial stiffness of isolation layer or sum of stiffnesses of all the rubber bearings placed in the isolation 
layer and Kb is stiffness of the supplemental spring. Once the lateral displacement of the isolation layer 
reaches d, as shown in Figure 4, the supplemental spring is permanently tied up to rubber bearings in the 
isolation layer and then the total stiffness of the isolation layer becomes Kb+K (see Figure 4). If the 
displacement of rubber bearing, which usually is caused by somewhat resonance effect from long period 
ground motions, is too large and reaches the prescribed limitation, the additional stiffness components 
will work together with rubber bearings. Then, the possibility of further increase of the displacement of 
rubber bearings would be suppressed because the natural period of the base-isolated building has been 
changed.  

 

 

 

 

 

 

2.  Mechanical Model and Equations of Motion 

 The mechanical model of base-isolated buildings and equations of motion under earthquake 
excitation has close similarity compared with soft pounding system described in preceding sections and 
only slight change is necessary in this case as depicted in following paragraphs. On this supposition, if 
using rigid foundation, the mechanical model will be similar as shown in Figure 3 but cb = 0 without 
rebound in this case. 

2.1  Equations of Motion without Additional Stiffness Component 

 When 2 ,d x d− ≤ ≤  additional stiffness component has no effects on the motion of the structure. The 
model, in Figure 3, becomes a common shear structure, the equation of motion is the same as Equation 
(1), but the number of degree-of-freedom reduces to 1.n −  

2.2  Equations System of Motion with Supplemental Stiffness Device 

 If the supplemental spring is installed only at the right side of the building and 2x d> , i.e. the 
displacement of the isolation layer is larger than the preset open space d  on the right side, the isolators 
will bump against the additional stiffness device. The stiffness of the isolation layer will increase .bk  The 
equations of motion after pounding are given by 

 [ ]{ } [ ]{ } { } [ ]{ } [ ]{ }1 g bM x C x K x M x K d + + = − + && & &&                                  (14) 

where [ K ] is equivalent stiffness matrix and is the same as Equation (4), but        
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The meanings of the notations in the above equations are identical with those of the preceding equations. 
 In contrast, if the supplemental spring is installed only at the left side and 2 ,x d< −  the isolators will 
bump against the left additional stiffness device. The equations of motion after pounding are just the same 
as the mentioned right pounding. It should be noted that once the bump occurs, the additional spring is 
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Fig. 4  The relation between force-displacement 
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tightly connected with the base-isolated building and is no longer separated afterwards. This is the 
difference between soft pounding protection and stiffness variable protection although they both have 
preset free space between building and protection devices. However, the supplemental spring can be 
installed either at the right side or the left side and both sides as well. 

3.  Analysis for an Example Building 

 Here, the preceding example building (model II) is considered. The period of the isolated structure is 
still retained at 1.97 sec in model II without soil-structure interaction. In order to discuss the parameter 
optimization for the systems of stiffness variable protection, we suppose that the systems of stiffness 
variable protection have been installed in the isolation layer. 
 The preset space d is chosen as 6 cm, 8 cm, 10 cm and 12 cm. The stiffness coefficient kb is 
determined by the value of 2 ,bNK k k=  where 2k  is stiffness coefficient of the isolation layer. The 
value of the NK  is chosen as 0, 0.5, 1.0, 2.0 and 4.0. None of the protection devices means 0.NK =  

The relationship between NK and TN  is CRTNNK ⋅′′⋅
−

=⋅ ξ
π

1.0ln  according to Equation (13). 

 In this sub-section, the Mexico earthquake record of 1985 is first used as input motion and the peak 
values for both the acceleration records are scaled to 220 gal and 620 gal (corresponding to elastic design 
earthquake and maximum considered earthquake in the seismic design code of China). The maximum 
interstorey displacements and maximum interstorey shear forces of isolation layer under excitation of 
Mexico records, for various values of d and NK, are calculated by using the program mentioned earlier 
and the results are listed in Tables 12-15. Obviously, the input period matches natural period of the 
seismically isolated building and the phenomena like resonance-response would happen in the base-
isolated structure. If we select rubber bearing of 40 cm in diameter, whose allowable displacement is 22 
cm according to the Chinese technology standard of base isolation rubber bearing, and without stiffness 
variable protection, this example structure would fail when it is subjected to Mexico wave even when the 
input peak acceleration is only 220 gal. This is because the interstorey displacement of isolation layer, 

max ,D  is 117 cm much larger than the allowed one. In fact, in this particular case, adopting base isolation 
scheme is not a good option either from economical or technical viewpoint. However, the occurrence 
probability of long period ground motion like Mexico wave is very small for most of earthquake prone 
areas except Mexico City. In order to deal with such kind of small probability event, stiffness variable 
protection system is a good choice. Actually the results shown in Tables 12 and 14 indicate that the first 
interstorey displacement rapidly decreases with increasing NK, the stiffness ratio of additional springs and 
rubber bearings. It can be seen from Table 12 that the first interstorey displacement, 2max ,D  slightly 
increases with increasing preset open space d in case of EPA = 220 gal. However, when EPA reaches 620 
gal, 2maxD seems no longer dependent on d in spite of what CN  values are as shown in Table 14. As for 
the influence of d  on first interstorey shear force, the situation is little bit complex. Generally speaking, 
the shear force increases with increasing d (see Table 13) but when EPA = 620 gal, the amplitudes of 
increase become very small (see Table 15). Furthermore, the figures shown in Table 13 indicate that the 
first storey shear forces first decrease and reach their minimum values at some points within NK  = 1-2 
and then increase with increasing .NK  When EPA reaches 620 gal, both the first storey displacements 
and shear forces monotonically decrease with increasing NK and the influence of d value is quite small as 
illustrated in Tables 14 and 15. The computational results in Tables 12 and 13 illustrate that NK  = 2 and 
small d value, for instance d = 6 cm, would be better choice when EPA reaches 220. The underlined 
figures in Tables 12-15 represent the allowed values of maximum displacements and corresponding shear 
forces. These underlined figures indicate that in case of EPA = 620 gal, NK should be taken 4 to fit the 
requirement of seismic design code and that the influences of d  either on displacement of isolation layer 
or on maximum structure shear force are insensitive. As mentioned previously, the situation of EPA 
reaching 620 gal is almost impossible even at Mexico City if the dominant period of ground acceleration 
is retained at 2.5 sec. We considered this particular case only for numerical comparison with other cases. 
 Now let us look at the results of analysis when the base isolation building is subjected to the El 
Centro wave (see Tables 16-19). In this case, the maximum displacements of seismic isolation layer 
exceed allowable value of 22 cm only when EPA is larger than 620 gal. When the input peak acceleration 
equals 220 gal, the stiffness variable system with d  = 5-12 cm and NK  = 0.5-4 almost has no effect on 
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the first interstorey displacement or lateral deformation of isolation 2maxD  as shown in Table 16. In fact, 
the figures listed in the column of NK  = 0 and the row of d  = 12 cm indicate the displacement of 
isolation layer of the building without stiffness variable spring, i.e. 10.7 cm, which has only tiny 
difference compared with all the other figures in Table 16. As for shear forces, it seems unfavorable if 
adopting stiffness variable protection in case of EPA = 220 gal. Actually, unlike Mexico wave input, the 
shear forces of the seismic isolation layer of the example building always increase with increasing NK  
values as shown in Tables 17 and 19. When EPA = 620 gal, the first interstorey displacement has 
minimum value in the vicinity of NK  = 1, and the first interstorey displacement increases within NK  = 
1.0-4.0 under El Centro wave excitation as shown in Table 18. This is because the period of base-isolated 
building is approaching the period of input motion with NK  increasing from 1 to 4. Therefore, NK  = 
0.5-2 and d  = 6-10 cm seem more reasonable options. It seems unnecessary to use stiffness variable 
system when the effective peak acceleration EPA = 220 gal but the safety of superstructure and rubber 
bearings cannot get insurance when EPA = 620 gal since the earthquake intensity is too large if using 
rubber bearings of diameter 40 cm. In order to protect superstructure and rubber bearings in isolation 
layer concerning both the input waves, adopting rubber bearings of 40 cm in diameter, accompanied by 
stiffness variable system of NK  = 0.5-1 and d  = 10-12, seems a reasonable option in this example. 

Table 12: Maximum Interstorey Displacement D2max (cm) for Model II Subjected to Mexico 
Wave (EPA = 220 gal) 

 d         NK 0 0.5 1 2 4 
6 117 40.5 23.9 12.7 7.75 
8 117 41.7 25.8 17.6 15.2 

10 117 41.7 26.2 18.4 15.2 
12 117 41.8 26.9 19.5 15.9 

Table 13: Maximum Interstorey Shear Force Q3max (kN) for Model II Subjected to Mexico 
Wave (EPA = 220 gal) 

 d         NK 0 0.5 1 2 4 
6 29700 15400 12000 9640 9820 
8 29700 15800 13100 13700 17400 

10 29700 15800 13300 14200 19000 
12 29700 15800 13600 14800 20900 

Table 14: Maximum Interstorey Displacement D2max (cm) for Model II Subjected to Mexico 
Wave (EPA = 620 gal) 

d         NK 0 0.5 1 2 4 
6 330 114 66.3 34.3 19.6 
8 330 114 66.5 34.6 19.9 

10 330 114 66.6 34.6 20.2 
12 330 114 66.7 34.9 20.6 

Table 15: Maximum Interstorey Shear Force Q3max (kN) for Model II Subjected to Mexico 
Wave (EPA = 620 gal) 

 d         NK 0 0.5 1 2 4 
6 83600 43410 33600 26000 24800 
8 83600 43400 33600 26100 25100 

10 83600 43400 33700 26300 25500 
12 83600 43400 33700 26500 26100 

 The figures shown in Tables 12-19 also indicate that when NK = 0, which is the case of normal base 
isolation system without supplemental spring, the preset space d is meaningless because it does not impart 
any influence either on interstorey displacements or on shear forces. Furthermore, if the preset space d is 
larger than the maximum response of the isolation layer, installation of supplemental spring is 
meaningless because it never takes part in any work during the earthquake. Similar situation can be 
expected for the previously discussed soft pounding protection system. From this point of view, both the 
protection systems of soft pounding and variable stiffness have similar characteristics. 
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Table 16: Maximum Interstorey Displacement D2max (cm) for Model II Subjected to El 
Centro Wave (EPA = 220 gal) 

 d         NK 0 0.5 1 2 4 
6 10.7 9.60 9.60 9.60 9.60 
8 10.7 9.88 9.60 9.60 9.60 

10 10.7 10.4 10.2 10.1 10.1 
12 10.7 10.7 10.7 10.7 10.7 

Table 17: Maximum Interstorey Shear Force Q3max (kN) for Model II Subjected to Input El 
Centro Wave (EPA = 220 gal) 

 d         NK 0 0.5 1 2 4 
6 272 361 438 609 934 
8 272 382 492 718 1170 

10 272 416 561 845 1390 
12 272 272 272 272 272 

Table 18: Maximum Interstorey Displacement D2max (cm) for Model II Subjected to Input El 
Centro Wave (EPA = 620 gal) 

 d         NK 0 0.5 1 2 4 
6 30.2 22.52 17.1 23.4 29.4 
8 30.2 22.3 17.7 22.5 30.0 

10 30.2 22.1 18.3 21.5 30.0 
12 30.2 21.8 18.9 20.5 29.3 

Table 19: Maximum Interstorey Shear Force Q3max (kN) for Model II Subjected to Input El 
Centro Wave (EPA = 620 gal) 

 d         NK 0 0.5 1 2 4 
6 7660 8540 8690 17800 37400 
8 7660 8480 8980 17200 38200 

10 7660 8390 9300 16400 38100 
12 7660 8280 9600 15600 37300 
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Fig. 7  Rubber bearing in large horizontal deformation

SOFT LANDING PROTECTION 

1.  Fundamental Principle 

 The concept of soft landing protection was first presented and tested by Kelly et al. (1980). To 
illustrate the soft landing protection of the isolation bearing, consider the parallel isolation system as 
shown in Figure 5. The system consists of two rubber bearings topped by a rigid platform (floor). The big 
bearing is installed after the small one has ended its vertical deformation. The small bearing carries the 
entire vertical load of the superstructure, so we call it original load-carrying bearing. The big one bears no 
vertical load in static state and is called backup bearing. It needs to be noted that the small bearing and the 
big one in Figure 5 represent all of load-carrying bearings and backup bearing in isolation layer, 
respectively. Assume that two ends of the bearings are connected with beams (upper beam and lower 
beam) by steel rings or round loops. The diameters of all the steel round loops surrounding load carrying 
and backup bearings are the same as those of the bearings except the upper steel loop of the backup 
bearing, whose diameter is 02∆  larger than that of the backup bearing as shown in Figure 5. When the 
upper beam moves against the lower beam, slippage would be taking place between the top surface of the 
backup bearing and the lower one of the upper beam. Suppose that the friction coefficient between the 
two slipping surfaces is µ . As mentioned previously, the axial force of the backup bearing is zero, thus, 
the original frictional force is zero too.  
 To analyze the process of the transmission of axial force, the following simplified assumptions are 
made: 
1.  The force-displacement relations of the load-carrying bearing and backup bearing are coincided to 

comply with the assumption of elastic deformation, and 1 2andv vk k  are their vertical stiffness 
coefficients, respectively. 

2.  Assume that two ends of the two bearings can only move translationally when analyzing their lateral 
deformations. The horizontal stiffness is determined according to the approximate theory proposed by 
Gent (1964), including the effect of flexural deformations and axial force (P-∆ effect). 

3.  The bearings’ subsidence displacement caused by large horizontal displacement is determined by the 
approximate method proposed by Kelly (1998). Thus, the additional vertical displacement, δv, is 
given by  

 
2

2v
cr

P
P rS

δ
π
∆

=       (16) 

where crP  is the critical force of the bearing, whose value can be calculated by using a well known 
formula (Gent, 1964; Koh and Kelly, 1986; Zhou et al., 1997; Zhou et al., 2000), r  is the radius of 
bearings, and S  is the first shape coefficient, for cylinder bearing, 2 ,rS r t=  in which rt  is the 
thickness of the laminated rubber. 
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 Given above assumptions, when the horizontal displacement of the system is larger than the value of 
0 ,∆  the horizontal deformations of the two bearings are ∆  and 0∆ −∆ , respectively (see Figure 6). 

During the course of deformation, a part of the axial force of the load-carrying bearing is transferred to 
the backup bearings. 
 According to the consistency condition of vertical deformations (see Figures 5 and 6), we have 

 2
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−               (17) 

where 1 2 1 2, , ,v vP P K K  are axial force and vertically compression coefficient of the bearing 1 and bearing 
2, respectively; 1 2andv vδ δ are the additional vertical displacements of the bearing 1 and bearing 2 due 
to horizontal displacement. It can be found that the following equations are true: 
 21 PPP +=                             (18) 

 2
1 1v cδ = ∆                                (19) 

 2
2 2 0( )v cδ = ∆ −∆                                (20) 

where 

 
111

1
1 2 Srp

pc
cr π

= ;   
222

2
2

2 Srp
p

c
cv π

=      

       
Substituting Equations (18), (19) and (20) into Equation (17) and rearranging it, following equation is 
obtained 
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 Through solving Equations (21) and (18), one obtains the axial force of the two bearings. When         
∆ ≤ ∆0, Equation (21) can be simplified as  
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Notice that Equation (22) is true for 0 0∆ = , i.e. there is no free space between the backup bearing and its 
upper steel loop. When the backup is rigid, obviously, 2 2,v crK P= ∞ = ∞  in Equations (21) and (22). 

 It needs to be noted that the horizontal displacement of the backup bearing caused by frictional force 
2( )Pµ  is neglected. In fact, when the value of 0∆  is small, the values of 2 2andP Pµ  are small too. In 

addition, the effect of the large horizontal displacement on critical force is neglected. This factor, 
however, is relatively more important and will be discussed in next section. 

2.  Effect of Large Horizontal Displacement on Critical Force and Distribution of Axial Force 

 To simplify the problem, the critical force is determined by the following equation (Kelly, 1998; 
Zhou et al., 1997)  

 
h

GAEIPcr
π

=   (23) 

where G  is equivalent shear modulus, E  is equivalent Young’s modulus of rubber bearing, I  is second 
moment of cross-section, A  is the net area of the section (the area of interior steel plate), and h  is the 
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height of the bearing (not including the two end steel plates). Equation (23) is deduced according to the 
theory of bending-shear beam, which chiefly undertakes shear deformation only while comprising small 
bending deflection. In case of large deformations, the bearing will deform as shown in Figure 7, where the 
effective load-bearing area, rA , is the shadowy area, the crossing part of the two circles in Figure 7. Let α 
be the ratio of load-bearing area, rA , and the area of section A, then we have 

 rA Aα=   (24) 

It is easy to find the relation between α  and ∆  from Figure 6. Kelly (1998) used Taylor’s series 
expansion, neglecting the high order terms, to obtain the following equations 
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where, λ  is the ratio of horizontal displacement and the diameter of the bearing, i.e. 2 .rλ = ∆   

 In Equation (23), on substituting rA  for ,A  we can get the equation of the critical force  

 cr crp GAEI p
h
πα α′ = =   (27) 

After including the effects of the large deformations, Equation (21) can be rewritten as 
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where, ,α β  are given by following equations: 

1. When 10 1.6r< ∆ < , 

 
2

3 5 1/ 2
1 1 1

1 1 1

2 1 12 [1 ( ) ( ) ]
12 320 crr s P

r r r

α
π

π π π

∆
=

∆ ∆ ∆
− + +

  (29) 
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2.  When 00 , 0.β< ∆ ≤ ∆ =  
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 Fig. 9  Hysteretic property of parallel system with rigid backup bearing 
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 When the backup bearing is assumed to be a rigid bearing, the distribution of the total vertical load 
between loading and backup bearing still can be calculated by Equations (28) to (32), but in this case, 

2 2, .V crK P= ∞ = ∞  

 
 
 
 
 
 
 
 
 

3.  Relation of Force-Displacement of the Parallel System 

 The parallel system shown in Figure 5 has force-displacement behavior as illustrated in Figure 8. 
Here, the solid line represents the skeleton curve neglecting the effect of frictional force and hysteretic 
loop. As illustrated in Figure 8, when 0 ,∆ < ∆  the stiffness of the system is the same as that of the load-
carrying bearing 1HK . On including the effect of large displacement on critical force, it is given by 

 
2

1 1 1
1 2

1 1 1

(1 )H
cr

G A PK
h Pα

= −   (33) 

where the subscript 1 represents bearing 1, and other notations are the same as previously mentioned. The 
value of ∆ increases as horizontal force increases. When 0 ,∆ ≥ ∆  bearings 1 and 2 get compressed and 
subside down slightly and some horizontal force begins to transfer to bearing 2. In this case, the stiffness 
of the system, HK , becomes 

 21 HHH KKK +=  (34) 

2HK  can be determined by Equation (33), just by substituting subscript 2 for 1. When it happens, the 
horizontal stiffness of the backup bearing will reduce the horizontal displacement. Then, the transferring 
of the axial force can protect the load-carrying bearing from losing its stability. Considering the above 
advantage of this system, the load-carrying bearing does not need to satisfy the provision of 11.1 ,r∆ ≤  
which is a general requirement for base-isolation system in the seismic design code of China (CABP, 
2001). This requirement means that the allowed maximum displacement of a rubber bearing cannot 
exceed 55% of the diameter of the rubber bearing. The code also requires that 3.0 rh n∆ ≤ ×  (where rh  is 
the thickness of each rubber layer and n is the total number of rubber layers). In fact, the results of the 
lateral deformation capacity tests for base isolation rubber bearings subjected to horizontal shear force 
under allowed vertical loading condition show that both of the requirements should be satisfied. 
Otherwise, the load-carrying bearing might lose its loading capacity. In this system, even if the load-
carrying bearing fails, the system will remain safe and will continue to withstand the dead load and lateral 
force until the backup bearing fails. 
  
 
 
 
 
 
 
 

Fig. 8  Horizontal stiffness property of parallel system  
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 Suppose that the frictional coefficient of the sliding surface of the backup bearing is µ, then the 
frictional force is 2.Pµ  The values of 2P  and 2Pµ  increase with an increase in the horizontal 
displacement. Thus, the actual force-displacement behavior of the system is as shown in dashed line in 
Figure 8(c). When the system is subjected to cyclic horizontal load, its force-displacement behavior 
becomes a hysteretic loop. Notice that the values of 2P  and 2Pµ  are negligible when the value of ∆ is 
small. 
 However, using large diameter rubber bearing as backup bearing will lead to more cost. In case of 
large deformations, the backup bearing is required to carry all of the vertical load and the horizontal force 
transmitted from the top slippage plate, but there is no special requirement for its horizontal deformation 
capacity. To reduce the cost of seismic design, we can use rigid bearings, such as infilled-concrete steel 
tube abutments, instead of rubber bearings. Let the frictional coefficient of its upper sliding surface be .µ  
Then, the force-displacement relation of the system is as shown in Figure 9. Here, the dashed line 
represents the force-displacement behavior of load-carrying bearings under force P. Curve 1 represents 
that of the parallel system while including the reducing effect of the force on the load-carrying bearing 
with increase in the horizontal displacement. Curve 2 represents that of the system when including the 
effect of frictional force. Curve 3 represents that of the system unloading. The area of the hysteretic loop 
consisting of curve 2 and curve 3 is the dissipating energy of the system under half-cycle load. In the 
system mentioned above, the value of second shape coefficient of the load-carrying bearings can be 
relatively large, i.e. smaller and higher rubber bearings can be used. The provision 11.1r∆ ≤  needs not be 
satisfied. Thus, even for small size building, the fundamental period of base-isolated structure can be 
relatively longer, for instance 3.0 sec or 4.0 sec. In addition, the frictional force of the backup bearing 
increases with the increasing of the displacement, hence, this system is actually a variable friction system; 
the increasing frictional force can effectively restrict the maximum displacement of the load-carrying 
bearing. The other advantage of this system is that a relatively large frictional coefficient can be chosen, 
and then cheaper frictional material is available. 

4.  Numerical Example 

 To illustrate the effectiveness of above parallel systems, we consider a system consisting of the load-
carrying bearings and the backup bearings. The backup bearings are rubber bearings or rigid abutments 
and pairs. 
 The parameters of the load-carrying bearings are: diameter d  = 300 mm, thickness of laminated 
rubber rt  = 5.0 mm, number of layers of the bearing n = 12, thickness of the laminated steel plate st  = 1.5 
mm, hardness of the rubber = 40, and critical force crP  = 3220 kN. 

4.1  Rubber Backup Bearing  

 The parameters of backup supporters are: diameter = 400 mm, thickness of the laminated rubber  
rt  = 5.0 mm, number of layers of the bearing n  = 12, thickness of the laminated steel plate st  = 1.5 mm, 

hardness of the rubber = 40, and critical force crP  = 9360 kN. 

1.  The value of ∆  is fixed as 150 mm, the vertical load P  = 300 kN, the value of 0∆  is fixed as 0, 20, 
35, 50 mm. Using Equations (21), (28) and (22), the ratio 1P P  can be calculated, where 1P  is the 
force in load-carrying bearing, and P  is the total vertical force. In addition, the vertical deformation 
of the load-carrying bearing vδ  is calculated by using Equations (19) and (27). The computational 
results are listed in Table 20. 

Table 20: P1/P and Vertical Deformation δv  

Pre-saving space of backup bearing ∆0 (mm) 0 20 35 50 

P1/P 0.810 0.804 0.803 0.801 Neglecting the decreasing of load-
bearing area δv (mm) 0.137 0.133 0.130 0.128 

P1/P 0.627 0.621 0.617 0.614 Considering the decreasing of load-
bearing area δv (mm) 0.297 0.277 0.266 0.256 
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 As shown in Table 20, with the increase in the value of 0 ,∆  the ratio 1P P  gradually reduces, but the 
extent of decrease is very small. For example, when the value of 0∆  increases from 0 to 50 mm, 
neglecting the influence of reduction in effective load-carrying area, the ratio 1P P  reduces only by 
0.51%. If the reduction in effective load-carrying area is considered, the ratio 1P P  reduces by 2.1%, 
which is larger than that on neglecting such kind of influence, namely 0.51%. 

Fig.10 Variation of δv1 with horizontal displacement
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Fig.11 Variation of P 1/P  with horizontal displacement
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 From Table 20, it can be seen that the vertical deformation, vδ , decreases with increasing 0∆ . For 
example, as the value of 0∆  increases from 0 to 50 mm, while neglecting the decrease in effective load-
carrying area, the decrease of vδ  is 6.7%, whereas the decrease of vδ  is 14% on considering the decrease 
in effective load-carrying area. 
2.  The value of 0∆  is fixed as 35 mm. For variable value of ,∆  we calculate the ratio 1P P  and δv. The 

results are depicted in Figures 10 and 11. The vertical coordinate of diagram, shown in Figure 10, 
represents the proportion of vertical deformation of rubber bearing to its total height. 

 From Figure 10, we can see that increasing ∆ causes the growth of vδ . The upper curve in Figure 10 
shows that if the decrease in the effective load-carrying area is taken into account, the increasing trend of 

vδ , with increasing ∆ , would be enhanced. 

 The vertical coordinate of diagrams, in Figure 11, shows the load carried by the load-carrying rubber 
bearing in the total vertical load. As illustrated in Figure 11, the force in load-carrying bearing reduces as 
∆  increases. However, the reduction apparently further accelerates when the influence of the decrease in 
effective load-carrying area is considered. 

4.2  Rigid Backup Bearing  

 The dashed line, in Figure 11, presents the corresponding calculated results for rigid backup bearing, 
i.e. the axial force acting on load-carrying bearing, 1P , reduces with increase in .∆  However, the value of 

1P P  for the rigid backup bearing is relatively smaller than when both the load-carrying and backup 
bearing are rubber bearings, at the same value of .∆  
 Figure 12 shows the change in axial force acting on rigid backup supporter with increasing horizontal 
displacement. It can be seen from Figure 12 that the vertical load of rigid backup bearing increases with 

Fig. 10  Variation of δv1 with horizontal displacement 

Fig. 11  Variation of P1/P with horizontal displacement 
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increasing ∆ . Suppose that the frictional coefficient on the top of rigid backup bearing is µ. Then, the 
frictional force 2Pµ  of rigid backup bearing increases with increasing ∆  as well. 

 
 
 
 
 
 
 
 

THE COMPARISON OF PROTECTION OPTIONS 

 The rubber bearings in seismic base isolation layer make the natural period of the system consisting 
of the superstructure and the base isolation layer shift to longer side far beyond the dominant periods of 
normal ground motion accelerations and thus greatly reduce the seismic response of the superstructure. It 
is the rubber bearings which undergo considerable lateral deformations, and thus protect the 
superstructure by making it behave nearly like a rigid body. Since the rubber bearings in seismic isolation 
layer are key components for ensuring safety of the protected structure, the bigger ones are desirable. On 
the other hand, the rubber bearings, acting as vertical load supporters of the superstructure, need not be 
designed too large in order to make the base-isolated building have appropriately longer natural period. In 
particular, the option of large rubber bearings not only is expensive but is also unreasonable because that 
will shorten the natural period of the base-isolated building. If the size of the rubber bearings is not large 
enough to withstand the required lateral deformations induced by the maximum considered earthquake, to 
protect them from failure in such kind of an earthquake is important. The three types of safety protection 
measures for rubber bearing in base-isolated buildings proposed in this paper can be regarded as safety 
fortifications of second line of structural earthquake resistance which will play an important role for 
surviving the unexpected extreme earthquake at lesser cost. 

1.  Soft Pounding Protection 

 The effectiveness of soft pounding protection depends on what parameters have been selected in the 
protection system. In pre-setting space ,d  the lower limit should be guaranteed so that the isolator could 
not bump against the stopper during frequently-occurring earthquake, and the upper limit should be 
determined according to the deformation capacity of the rubber bearings. Generally, a relatively smaller 
value of d is preferable from the point of engineering practice. 
 The damping property of the buffer stopper can be represented by the ratio of its damping coefficient 
and that of the isolators. For different values of d  and ,TN  the value of CR  has different suitable ranges 
where the smaller value is preferable. 
 The value of ,TN  which represents the relative flexible property of the stopper, should not be too 
small. For normal structures, the effect of the soil-structure interaction can be neglected when we analyze 
base-isolated building with pounding protection. Therefore, in engineering design, we normally can use 
model II of the rigid foundation structure to replace model I in consideration of soil-structure interaction. 

2.  Stiffness-Variable Systems 

 Referring to the way discussed above, it is illustrated that the systems of stiffness variable protection 
may achieve very satisfactory controlling effect when the values of d  and NK  are adequate.  
 The stiffness property of the stiffness variable protection systems should be optimized deliberately 
from the mentioned three aspects, i.e., isolation layer, superstructure and construction cost. For different 
values of d, the value of NK  has different suitable ranges where the small value is preferable.  
 Meanwhile, it is worth pointing out here that the systems of stiffness variable protection can be 
installed either on one side or on both sides of the base-isolated building. 

Fig. 12  Variation of P2/P with horizontal displacement 
Fig.12 Variation of P 2/P  with horizontal displacement
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3.  Soft Landing Protection 

 The base isolation system, proposed here, consists of a load-carrying rubber bearing and an elastic or 
rigid backup supporter in parallel. It should be noted that the analysis aiming at soft landing protection 
system is primary and tentative because the rubber bearings and the backup supports distributed in 
isolation layer are respectively lumped as one component as shown in Figures 5 and 6. However, the 
vertical loading forces among various load-carrying rubber bearings are uneven and the global stability of 
the whole base isolation building is surely better than that of the individual ones, under action of dead 
load and lateral earthquake force simultaneously. Furthermore, the transmission of dead load from load-
carrying rubber bearings to backup supports is inhomogeneous and the friction forces on the surfaces of 
backup supports, caused by the dead load transmitted from load carrying rubber bearings, are uneven as 
well. Hence, the real situation of the interaction behavior among load-carrying bearings and backup 
supports, is much more complex than that has been described above. But as a new approach and option of 
base isolation system the mentioned simple model should be a foundation for further study. As a 
supplemental measure, the combined system consisting of load-carrying rubber bearings and backup 
supporters with friction sliding surface has following advantages: 
1.  The backup bearing can protect the load-carrying bearing from losing its stability. 
2.  With a sliding plate, the backup bearing can supply variable frictional force to limit the displacement 

of the isolation layer. 
3.  Because the vertical force transfers gradually from load-carrying bearing to backup bearing, the 

bumping or impacting effect would be insignificant when large horizontal displacement happens. 
4.  For the load-carrying bearing, when its lateral deformation is small, because of large P −∆  effect, its 

horizontal stiffness is relatively small. In the case of large lateral deformations, its decreasing axial 
force causes reduction in P −∆  effect, thus its horizontal stiffness increases, and then the increase in 
displacement is restricted. 

 In summary, this system, making full use of the capacity of the rubber bearing and reducing the total 
cost of isolation system, usually is an economical and effective isolation system. To apply this system in 
engineering practice, more sophisticated dynamic analysis model and experimental work are needed. The 
creeping of load-carrying bearing under dead load and the optimization of parameters also need to be 
intensively studied. In addition, to bring this system into full play, the following aspects should be 
noticed: 
1.  The tolerable shear stain should be as large as possible, such as 500% or higher, and the adhesive 

strength of the steel plate and the rubber should be enough. 
2.  The backup bearing must be able to carry all of the vertical load and the horizontal shear force 

imparted by the sliding plate. 
3.  The frictional coefficient of the slide elements should be selected on the basis of analysis and 

comparison. The sliding displacement of the rigid backup bearing should match with the deformation 
capacity of the load-carrying bearing when its axial force is zero. 

4.  The value of crP P  ( P  is the total vertical load on superstructure that is entirely imparted on the 
load-carrying bearing before the lateral deformation takes place) should be appropriately selected. 
Avoid both swelling or inclining of the rubber bearing due to the excessively large crP P  and the 
transmission hampering of the force from load-carrying bearing to backup bearing due to an 
extremely small .crP P  

5.  While designing the upper beams of isolation layer, one should pay sufficient attention to the fact that 
the vertical loads eventually will be carried by the backup bearings when large lateral displacement 
happens during the extreme earthquake. Also, necessary structural measures should be undertaken to 
ensure safety both for superstructure and bearing supports. 

CONCLUSIONS  

 In the mentioned three types of rubber bearing protection measures, the common point of soft 
pounding and stiffness variable systems is using supplemental spring and damping devices to limit 
growth of the lateral displacement of rubber bearings in seismic isolation layer. Those will inevitably 
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induce some high frequency contents of vibration and then enhance structural shear forces and absolute 
acceleration responses. However, analyses have illustrated that the resulting unfavorable effect cannot 
counteract the displacement reduction of isolation layer brought by the seismic protection system. The 
difference between soft pounding and stiffness variable system is that the additional spring installed at 
ground stopper can be re-separated from base-isolated building in the soft pounding system, but in 
contrast, the additional spring is permanently fixed on building once it is connected with the building in 
stiffness variable protection system. In addition, the soft pounding system usually needs elastic stoppers 
and buffers but stiffness variable system only uses additional spring. Soft landing protection uses backup 
supporters to receive weight of superstructure when rubber bearing suffers excessive lateral deformation 
and loses its loading capacity or stability when subjected to an unexpected strong earthquake. During the 
course of load transmission and slippage along the top surface of the backup bearing, the base-isolated 
building would suffer bump and shock. However, such kind of complex phenomenon has not yet been 
included in the analysis model and thus more intensive research is needed on this aspect. Furthermore, in 
this paper, only a preliminary theoretical analysis has been carried out, and therefore, the shaking table 
experimental verification needs to be done in future. Compared with the soft pounding system through 
using stoppers and buffers as described above, the latter ones, i.e. stiffness variable system and the soft 
landing system are simpler, less expensive and easier to realize in practice. All these measures mainly suit 
to the case when the height of the isolation layer is short. Otherwise, the restrainer components including 
reaction walls, stoppers and backup supports should be very thick and large to make them have sufficient 
stiffness and strength.  
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